簡易檢索 / 詳目顯示

研究生: 楊昀林
Yang, Yun-Lin
論文名稱: 應用在正交或非正交回傳通道之強健融合法則
Robust Fusion Rules for Distributed Detection Systems Using Orthogonal or Non-orthogonal Report Channels
指導教授: 賴癸江
Lai, Kuei-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 37
中文關鍵詞: 分散式偵測系統偏斜係數線性結合技術直接序列分碼多工
外文關鍵詞: distributed detection system, deflection coefficient, linear combining, DS-CDMA
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們分成兩部份探討二元分散式偵測系統,並且設計決策融合法則。在第一部份,本地偵測器使用開關調變傳送本地判斷,經過互相平行的平坦衰減通道至資料融合中心。我們在同調與非同調接收下,分別設計只需要部份即時通道資訊及完全使用通道統計特性取代即時通道資訊的融合法則。使用方法為:線性結合接收信號形成融合統計量,以降低複雜度,並且利用最大化融合統計量的偏斜係數求得結合權重。求得的結合權重會依據各個本地偵測器的效能參數與通道的品質好壞來分配。模擬結果顯示,提出的兩種融合法則具有強健的偵測效能,並且在低訊雜比時會近似於最佳概似比法則。
    第二部份,在本地偵測器與資料融合中心之間的傳輸通道為非正交的情形下,透過直接序列分碼多工傳送本地判斷。並將資料融合中心分成兩個階段。第一階段利用多使用者偵測器去決定各個本地偵測器傳送資料為何,第二階段再使用融合法則做出總判斷。我們針對第一階段使用多使用者線性偵測法,在第二階段將其軟性決策作為結合權重,線性結合依據硬性決策得到之對數概似比值。模擬結果說明:將軟性決策作為結合權重的融合法則比僅使用硬性決策的概似比法則,在低訊雜比下擁有更好的偵測效能,但在高訊雜比下偵測性能較差。因此,我們在假設已知訊雜比下,設計出融合前述二者的融合法則。模擬結果顯示,此融合法則會具有較強健的偵測效能。

    In this thesis, we discuss the design of the fusion rules for binary distributed detection systems in two parts. In the first part, the local sensors send their decisions to the fusion center over parallel flat-fading channels using on-off keying. We propose both coherent and non-coherent fusion rules using channel statistics. For complexity concerns, the fusion statistic is obtained by linearly combining the received signals or the instantaneous received powers at the fusion center. The deflection coefficient of the fusion statistic is maximized to obtain the combining weights, which accounts for both the detection performance of local sensors and the quality of channels. Simulation results show that the proposed fusion rules have a robust detection performance, and approximate the optimum fusion rules based on the likelihood ratio test in low channel signal-to-noise ratios (SNRs).
    In the second part, the local sensors transmit decisions using the direct-sequence code-division multiple-access signaling over non-orthogonal flat-fading channels. For complexity concerns, we consider the case where the fusion rule is partitioned into two stages. The first stage performs multiuser detection which decides what information was transmitted from local sensors. The second stage accomplishes the fusion and makes the final decision. We focus on the linear multiuser detector in the first stage, and use the soft decisions as the weighting to linearly combine the log-likelihood ratios that are obtained from the hard decisions. According to the simulation results, the weighted fusion rule has a better detection performance in the low-SNR regime than the fusion rule which uses only the hard decisions, but has a poorer detection performance in the high-SNR regime. A modification is proposed to achieve a robust performance in both regimes.

    目錄 第一章 導論........................1 1.1. 前言.........................1 1.2. 動機.........................2 1.2.1. 平行回傳通道....................2 1.2.2. 非正交回傳通道...................3 1.3. 論文章節提要.....................4 第二章 平行回傳通道系統模型之研究探討...........5 2.1. 系統模型.......................5 2.2. 提出方法之推導及與文獻方法之比較...........6 2.2.1. 同調接收模型.....................6 2.2.1.1. 同調接收下,文獻提出的使用部分即時通道資訊之最佳融合法則............................7 2.2.1.2. 同調接收下,使用部份即時通道資訊提出之融合法則............................8 2.2.1.3. 同調接收下,文獻中使用完整即時通道資訊之最佳融合法則............................11 2.2.1.4. 同調接收下,文獻提出使用最大化偏斜係數得到的次佳融合法則............................11 2.2.2. 非同調接收模型....................12 2.2.2.1. 非同調接收下,文獻中提出的最佳融合法則.......12 2.2.2.2. 非同調接收下,利用最大化偏斜係數提出的融合法則...12 第三章 平行回傳通道之模擬結果...............14 3.1. 第一種情況:不同本地偵測器效能,相同平均通道接收訊雜比............................14 3.2第二種情況: 相同本地偵測器效能,不同平均通道接收訊雜比............................16 第四章 非正交回傳通道系統模型之研究探討..........18 4.1. 最佳融合法則及其系統模型...............18 4.2. 分段式融合法則與系統模型...............20 4.3. 提出之融合法則....................23 4.3.1. 分段式權重概似比融合法(separated weighted likelihood ratio test, SW-LRT).........23 4.3.2. 複合式概似比融合法(compound likelihood ratio test, C-LRT)..................24 第五章 非正交回傳通道之模擬結果..............25 5.1. 第一階段使用去相關多使用者偵測器...........25 5.1.1. 高訊雜比下,SW-LRT與S-LRT效能差異分析......27 5.2. 第一階段使用單使用者匹配濾波器............29 5.3. 第一階段使用線性最化小均方誤差偵測器.........31 5.4. 各種多使用者偵測器結合較佳的融合法則與文獻方法比較..........32 第六章 結論........................35 參考文獻.........................37

    [1] R. Viswanathan and P. K. Varshney, “Distributed detection with multiple sensors: Part
    I – fundamentals,” Proceedings of the IEEE, vol. 85, pp. 54 – 63, January 1997.

    [2] P. K. Varshney, Distributed Detection and Data Fusion. New York:Springer, 1997.

    [3] C. Cordeiro, K. Challapali, D. Birru, and S. S. Nandagopalan, “IEEE 802.22: An
    introduction to the first wireless standard based on cognitive radios,” Journal of
    Communications, vol. 1, pp. 38 – 47, April 2006.

    [4] B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “Channel aware decision fusion in wireless sensor networks,” IEEE Trans. Signal Process., vol. 52, no. 12, pp. 3454-3458, Dec. 2004.

    [5] J.J Jia, “A Linear-Combining Fusion Rule for Distributed Detection Systems via Maximizing the Deflection Coefficient,” Institute of Compute Communication Engineering National Cheng Kung University Thesis for Master of Science, June 2009.

    [6] R. Niu, B. Chen, and P. K. Varshney, “Fusion of decisions transmitted over Rayleigh fading channels in wireless sensor networks,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 1018-1027, Mar. 2006.

    [7] R. Jiang, B. Chen, “Fusion of censored decisions in wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2668-2673, Nov. 2005.

    [8] S. K. Jayaweera, “Optimal Bayesian Data Fusion and Low-complexity Approximations for Distributed DS-CDMA Wireless Sensor Networks in Rayleigh Fading,” in 2nd International Conf. on Intelligent Sensing and Information Processing (ICISIP 05), Chennai, India, Jan. 2005.

    [9] J. S. Dyer and B. Natarajan, “Improved Low-Complexity Fusion Receivers for Synchronous DS-CDMA Sensor Networks,” in 16th International Conf. on Computer Communications and Networks (ICCCN 07), Honolulu, Hawaii, USA, Aug. 2007.

    [10] S. Yiu and R. Schober, “Nonorthogonal transmission and noncoherent fusion of censored decisions,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 263-273, Jan. 2009.

    [11] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Englewood Cliffs, NJ: Prentice-Hall, 1998.

    [12] S. Verdu, Multiuser Detection. Cambridge, UK: Cambridge Univ. Press, 1998.

    下載圖示 校內:立即公開
    校外:2012-07-14公開
    QR CODE