簡易檢索 / 詳目顯示

研究生: 葉宗凱
Yeh, Tsung-Kai
論文名稱: Sn-Zn-xAg-Al-Ga無鉛銲錫氧化行為之研究
Investigations on the Oxidation Behavior of Sn-Zn-xAg-Al-Ga Lead-Free Solders
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 無鉛銲錫鬚晶熱重分析氧化恆溫恆濕
外文關鍵詞: solder, oxidation, whisker, TGA
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 錫鋅系無鉛銲錫一直以來有抗氧化性不良的缺點,無論在製程或應用環境中,均容易受到氧化所造成的影響,使得產品壽命降低。本研究係探討本實驗室所開發的Sn-8.5Zn-xAg-0.01Al-0.1Ga(x = 0~1.0wt%)無鉛銲錫合金在高溫中與恆溫恆濕環境中的氧化行為,恆溫恆濕實驗過程中,銲錫表面出現鬚晶,因此本研究也進一步觀察錫鬚晶的成長行為。
    顯微結構分析結果顯示,Sn-8.5Zn-xAg-0.01Al-0.1Ga(x = 0~1.0wt%)銲錫合金添加銀之後,會於合金中形成AgZn3介金屬化合物,且使原本銲錫基地內之富鋅相逐漸減少。熱重分析(Thermal Gravimetric Analysis, TGA)的結果顯示,Sn- 8.5Zn-xAg-0.01Al-0.1Ga(x = 0~0.5wt%)銲錫合金隨著銀含量增加,氧化速率及氧化量都會減少,氧化物的主要成份是ZnO,因為氧化層阻擋鋅原子與氧原子之間的互相擴散與反應,氧化反應約到25分鐘達到平衡。
    銲錫合金經恆溫恆濕試驗(85℃/85%RH)後,所產生的氧化物大部份為ZnO,也有少量SnO2,氧化層的厚度隨銀含量增加而增加。錫鬚晶主要是因為銲錫合金內部的壓縮應力所產生,壓縮應力的來源是由於鋅於錫之晶界氧化生成ZnO,造成體積膨脹,擠壓錫之晶粒。

    The Sn-Zn based solder exhibits unsatisfactory oxidation resistance. It is very prone to oxidation that decreases the life of products. This study investigated the oxidation behavior of Sn-8.5Zn-xAg-0.01Al-0.1Ga(x= 0~1.0wt%) solders at high temperatures and during heat/humidity exposure. During the experiment, some whiskers formed on the surface of the solder. Therefore, the observation of Sn whisker growth behavior was also investigated in this study.
    The microstructure of Sn-8.5Zn-xAg-0.01Al-0.1Ga(x=0~1.0wt%) shows that the AgZn3 compound was formed after the addition of Ag to the solder. The results of thermal gravimetric analysis(TGA) showed that the oxidation rate and oxide decreased as the Ag content of Sn-8.5Zn-xAg- 0.01Al-0.1Ga(x=0~0.5wt%) increase. The major composition of the oxide was ZnO. Because the oxidation layer blocked the reaction and diffusion between Zn and O2, the oxidation reaction reaches saturation after 25 minutes.
    The content of Zn-rich phase decreased in the matrix. After heat/humidity exposure at 85℃/85%RH(relative humidity), the major oxide formed are ZnO and a few SnO2. The thickness of oxidation layer increases with increasing Ag content. Sn whisker growth was driven by the compressive stress in the solder. The compressive stress is introduced due to the volume expansion when ZnO formed at the grain boundary of Sn.

    中文摘要..................................................I 英文摘要.................................................II 致謝....................................................III 總目錄...................................................IV 表目錄...................................................VI 圖目錄..................................................VII 第壹章 簡介............................................1 1-1 電子構裝技術.........................................1 1-2 無鉛銲錫材料的應用...................................5 1-2-1 Sn-Ag-Cu系合金.....................................6 1-2-2 Sn-Zn系合金........................................6 1-3 銲錫材料的氧化行為...................................6 1-3-1 製程環境中的氧化...................................6 1-3-2 應用環境中的氧化..................................10 1-3-3 氧化熱力學........................................10 1-3-4 氧化動力學........................................12 1-3-5 氧化機構..........................................15 1-3-6 純錫的氧化行為....................................15 1-3-7 Sn-Pb合金的氧化行為...............................16 1-3-8 Sn-Zn-X合金的氧化行為.............................16 1-4 錫鬚晶的影響........................................16 1-4-1 錫鬚晶的成因......................................19 1-5 研究目的............................................19 第貳章 實驗方法與步驟...................................20 2-1 實驗構想與設計......................................20 2-2 銲錫合金的配製......................................20 2-3 高溫氧化行為分析....................................20 2-3-1 熱重分析..........................................20 2-3-2 比重量測..........................................24 2-3-3 表面氧化層的分析..................................24 2-3-4 分析氧化行為模式..................................26 2-4 恆溫恆濕試驗........................................26 2-4-1 試片製備..........................................26 2-4-2 恆溫恆濕試驗條件..................................26 2-4-3 表面及橫截面分析..................................26 第參章 結果與討論.......................................28 3-1 微觀組織觀察........................................28 3-2 高溫氧化行為........................................33 3-2-1 不同銲錫材料的氧化行為比較........................33 3-2-2 氧化速率計算......................................39 3-2-3 氧化活化能比較....................................39 3-2-4 表面氧化物分析....................................42 3-2-5 綜合討論..........................................53 3-3 錫鬚晶成長行為......................................58 3-3-1 不同銲錫材料在恆溫恆濕下的氧化行為................58 3-3-2 錫鬚晶成長比較....................................67 3-3-3 綜合討論..........................................67 第肆章 結論.............................................79 參考文獻.................................................80 自述.....................................................86

    1. D. P. Seraphim, R. C. Lasky, and C. Y. Li, Principles of Electronic Packaging, McGraw-Hill, Inc., New York, pp. 2-4, 1989.
    2. D. L. Deborah Chung, Material for Electronic Packaging, Butterworth- Heinemann, Boston, pp. 3-4, 1995.
    3. R. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, Chap. 21, p. 856, 2001.
    4. P. A. Totta, Advances in Electronic Packaging, ASME, New York, USA, Vol. 1, p. 323, 1997.
    5. K. Jung and H. Conrad, “Microstructure Coarsening During Static Annealing of 60Sn40Pb Solder Joints: I Stereology”, Journal of Electronic Materials, Vol. 30, No. 10, pp. 1294-1302, 2001.
    6. J. H. Lau, Flip Chip Technologies, McGraw-Hill, New York, Chap. 1, 1995.
    7. K. Jung and H. Conrad, “Microstructure Coarsening During Static Annealing of 60Sn40Pb Solder Joints: II Eutectic Coarsening Kinetics”, Journal of Electronic Materials, Vol. 30, No. 10, pp. 1303-1307, 2001.
    8. P. A. Totta, Advances in Electronic Packaging, ASME, New York, USA, Vol. 1, p. 337, 1997.
    9. H. Reichl, A. Schubert, and M. Topper, “Reliability of chip and size packages”, Microelectronics Reliability, Vol. 40, p. 1243, 2000.
    10. J. Baliga, “Filp-chip packaging; prepare for the ramp-up”, Semiconductor International, Vol. 21, p. 87, 1998.
    11. N. C. Lee, “Getting Ready for Lead-Free Solder”, Soldering and Surface Mount Technology, Vol. 9, No. 2, pp. 65-69, 1997.
    12. C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, “Properties of Lead-Free Solder Alloys with Rare Earth Element Additions”, Materials Science and Engineering R, Vol. 44, No. 1, pp. 1-44, 2004.
    13. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering R, Vol. 27, pp. 95-141, 2000.
    14. S. Jin, “Developing Lead-Free Solders: Developing Lead-Free Solders-A Challenge and Opportunity”, JOM-Journal of the Minerals Metals & Materials Society, Vol. 45, No. 7, p. 3, 1993.
    15. C. F. Chan, S. K. Lahiri, P. Yuan and J. B. H. How, “An Intermetallic Study of Solder Joints with Sn-Ag-Cu Lead-Free Solder”, 3rd Electronics Packaging Technology Conference, Singapore, pp. 72-80, 2000.
    16. M. K. Huang, C. Lee and P. L. Wu, “The Effects of Surface Finish on the Reliability of Lead Free and Tin Lead Chip Scale Package Solder Joints”, Soldering and Surface Mount Technology, Vol. 17, No. 3, pp. 3-8, 2005.
    17. B. A. Cook, I. E. Anderson, J. L. Harringa, and R. L. Terpstra, “Effect of Heat Treatment on the Electrical Resistivity of Near-Eutectic Sn-Ag-Cu Pb-Free Solder Alloys”, Journal of Electronic Materials, Vol. 31, No. 11, pp. 1190-1194, 2002.
    18. P. Ratchev, B. Vandevelde, and I. D. Wolf, “Reliability and Failure Analysis of Sn-Ag-Cu Solder Interconnections for PSGA Packages on Ni/Au Surface Finish”, IEEE Transactions on Device and Materials Reliability, Vol. 4, No. 1, pp. 5-10, 2004.
    19. K. S. Kim, S. H. Huh and K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu”, Microelectronic Reliability, Vol. 43, pp. 259-267, 2003.
    20. M. McCormack and S. Jin, “Progress in the Design of New Lead-Free Solder Alloys”, JOM-Journal of the Minerals Metals & Materials Society, Vol. 45, No. 7, pp. 36-40, 1993.
    21. 白蓉生,電路板與無鉛焊接,桃園:台灣電路版協會,民國95年。
    22. K. L. Lin and T. P. Liu, “High-Temperature Oxidation of a Sn-Zn-Al Solder”, Oxidation of Metals, Vol. 50, No. 314, pp. 255-267, 1998.
    23. N. Birks and G. H. Meier, Introduction to High Temeprature Oxidation of Metals, Chap. 2, pp.15-18, 1983.
    24. J. M. Song and K. L. Lin, “Double Peritectic Behavior of Ag-Zn Intermetallics in Sn-Zn-Ag Solder Alloys”, Journal of Materials Research, Vol. 19, No. 9, pp. 2719-2724, 2004.
    25. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, Butter Worths, London, p. 259, 1967
    26. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, London and New York, Chap. 1, pp. 15-24, 1988.
    27. N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Chap. 3, pp. 31-42, 1983.
    28. N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Chap. 3, pp. 54-64, 1983.
    29. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, Butter Worths, London, p. 35, 1967.
    30. D. A. Jones, Principle and Prevention of Corrosion, Macmillan Publishing Company, New York, p. 411, 1992.
    31. R. G. Miller and C. Q. Bowles, “The Oxidation of 63Sn/37Pb at Typical Soldering Temperatures”, Oxidation of Metals, Vol. 33(1-2), p. 95, 1990.
    32. J. F. Kuhman, K. Maly, A. Preub, B. Adolphi, K. Drescher, T. Wirth, W. Oesterle, M. Fanciulli, and G. Weyer, “Oxidation and Reduction of Liquid SnPb(60/40) under Ambient and Vacuum Conditions”, Journal of Electrochemistry Society, Vol. 145, No. 6, 1998.
    33. X. Chen, M. Li, X. X. Ren, A. M. Hu, and D. L. Mao, “Effect of Small Aditions of Alloying Elements on the Properties of Sn-Zn Eutectic Alloy”, Journal of Electronic Materials, Vol. 35, No. 9, 2006.
    34. W. J. Choi, T. Y. Lee, K. N. Tu, N. Tamura, R. S. Celestre, A. A. MacDowell, George T. T. Sheng, Y. Y. Bong, and L. Nguyen, “Structure and Kinetics of Sn Whisker Growth on Pb-Free Solder Finish”, 52nd Electron. Comp. & Tech. Conf., San Diego, CA, p. 628-633, 2002.
    35. K. N. Tu and J. C. M. Li, “Spontaneous Whisker Growth on Lead-Free Solder Finishes”, Materials Science and Engineering A, Vol. 409, pp. 131-139, 2005.
    36. B. Z. Lee, D. N. Lee, “Spontaneous Growth Mechanism of Tin Whiskers”, Acta Materialia, Vol. 46, No. 10, pp. 3701-3714, 1998.
    37. George. T. T. Sheng, C. F. Hu, W. J. Choi, K. N. Tu, Y. Y. Bong, and Luu Nguyen, “Tin Whiskers Studied by Focused Ion Beam Imaging and Transmission Electron Microscopy”, Journal of Applied Physics, Vol. 92, No. 1, pp. 64-69, 2002.
    38. K. W. Moon, C. E. Johnson, M. E. Williams, O. Kongstein, G. R. Stafford, C. A. Handwerker, and W. J. Boettinger, Observed Correlation of Sn Oxide Film to Sn Whisker Growth in Sn-Cu Electrodeposit for Pb-Free Solders, Journal of Electronic Materials Vol. 34, No. 9, pp. 31-33, 2005.
    39. C. Xu., Y. Zhang, C. Fan, and J. A. Abys, Understand Whisker Phenomenon: The Driving Force for Whisker Formation, Circuitree, Vol. 15, pp. 94-105, 2002.
    40. K. S. Kim, T. Matsuura, and K. Suganuma, “Effect of Bi and Pb on Oxidation in Humidity for Low-Temperature Lead-Free Solder Systems”, Journal of Electronic Materials, Vol. 35, No. 1, 2006.
    41. K. N. Tu, C. Chen, and A. T. Wu, “Stress Analysis of Spontaneous Sn Whisker Growth”, J. Mater Sci: Mater Electron, Vol. 18, pp. 269-281, 2007.
    42. C. Xu, Y. Zhang, C. Fan and J. Abys, “Understanding Whisker Phenomenon: Driving Force for Whisker Formation”, Cookson Electronics PWB Materials and Chemistry, p. 4, 2002.
    43. R. C. Weast, M. J. Astle, Handbook of Chemistry and Physics, 61st Edn., Florida, D-45, 1981.
    44. 黃家緯,錫鋅系無鉛銲錫之研究,博士論文,成功大學材料系,59~60頁,2005。
    45. G. P. Vassilev, E. S. Dobrev, S. K. Evtimova, J. C. Tedenac, “Studies of the Phase Equilibrium in the Ag-Sn-Zn system”, Journal of Alloys and Compounds, Vol. 327, pp. 285~291, 2001.
    46. R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley, Selective Values of Thermodynamics Properties of Metals and Alloys, John Willey & Sons, Inc., Chap. 3, p. 399, 1990.
    47. A. Z. Miric and A. Girusd, “Lead-Free Alloys”, Soldering & Surface Mount Technology, Vol. 10, No. 1, pp. 19-25, 1998.
    48. K. Suganuma and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu, Journal of Materials Research”, Vol. 13, No. 10, pp. 2859-2865, 1998.
    49. J. M. Song, G. F. Lan, T. S. Lui, and L. H. Chen, “Microstructure and Tensile Properties of Sn-9Zn-xAg Lead-Free Solder Alloys”, Scripta Materialia, Vol. 48, pp. 1047-1051, 2003.
    50. P. Villars, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 1997.
    51. K. Jung and H. Conrad, “Microstructure Coarsening During Static Annealing of 60Sn40Pb Solder Joints: III Intermetallic Compound Growth Kinetic”, Journal of Electronic Materials, Vol. 30, No. 10, pp. 1308-1312, 2001.
    52. C. Kanchanomai, Y. Miyashita, Y. Mutoh, “Low-cycle fatigue behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu-Bi lead-free solders”, Journal of Electronic Materials , Vol. 31, No. 5, pp. 456-465, 2002.
    53. J. Madeni, S. Liu, and T. Siewert, "Casting of Lead-Free Solder Bulk Specimens with Various Solidification Rates", ASM International-TMS Annual Conference, Indianapolis, 2001.
    54. J. Zhao, Y. Mutoh, Y. Miyashita, S. L. Mannan, “Fatigue Crack-Growth Behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi Lead-Free Solders”, Journal of Electronic Materials, Vol. 31, No. 8, pp. 879-886, 2002.
    55. J. M. Song and K. L. Lin, “Behavior of Intermetallics in Sn-Zn-Ag Solder Alloys”, Journal of Materials Research, Vol. 18, No. 9, pp. 2060-2067, 2003.

    下載圖示 校內:2008-07-16公開
    校外:2008-07-16公開
    QR CODE