簡易檢索 / 詳目顯示

研究生: 許懷謙
Hsu, Huai-Chien
論文名稱: 台灣線上精密單點定位服務(TOPS)之設計與建立
Design and implementation of Taiwan online precise point positioning service (TOPS)
指導教授: 楊名
Yang, Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 79
中文關鍵詞: 精密單點定位線上精密單點定位服務精度分析靜態定位動態定位TWD97[2010]
外文關鍵詞: Precise Point Positioning, online PPP services, Accuracy evaluation, Static, Kinematic, TWD97[2010]
相關次數: 點閱:220下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精密單點定位(Precise Point Positioning, PPP)為一種利用精密衛星星曆和衛星時錶誤差等誤差改正產品進行單點定位的定位方法,PPP無需仰賴基站的設置,使用者只需一台接收儀便可以作業。由於PPP能提供ITRF坐標框架內公分級精度的定位成果,因此被廣泛應用於科學研究以及工程應用等領域。國際上已有數個線上PPP服務,然而各服務所提供之服務項目略有不同,例如支援的衛星星系以及坐標框架等等。本研究嘗試建立一個針對台灣地區需求所設計的線上PPP服務,稱作台灣線上精密單點定位服務TOPS (Taiwan Online Precise Point Positioning Service),其特色在於它可透過台灣區域變形模型將PPP計算成果由ITRF坐標框架轉換至TWD97[2010]坐標框架,使其除了能支援ITRF坐標框架的定位成果外,還能支援TWD97[2010]坐標框架的定位成果。為了解TOPS定位成果的可靠性,本研究分別對TOPS在ITRF坐標框架以及TWD97[2010]坐標框架下的定位成果進行精度分析。根據分析成果,TOPS在ITRF坐標框架下,其靜態模式下的每日解定位誤差的RMS值於E、N、U方向為1公分左右,而動態模式下的68%平面與高程定位誤差皆可在1小時內收斂至4公分左右。另外,TOPS在TWD97[2010]坐標框架下,其靜態模式下的每日解定位誤差的RMS值於E、N方向分別為2.2公分以及2.4公分,U方向為9.2公分。

    Precise Point Positioning (PPP) is an optimal approach which provides position solutions by using error correction product. PPP does not require simultaneous observations from base stations, users can conduct field work with a single GNSS receiver. Since PPP can provide positioning results at centimeter-level precision, it is widely used in scientific research and engineering applications. Several online PPP services have been developed by different organizations (e.g., GAPS, APPS, CSRS-PPP and magicGNSS) and the performance of these online services are proved to be stable and reliable. In this research, we implement an online PPP service which is designed for the needs of Taiwan, which we call Taiwan Online Precise Point Positioning Service (TOPS). TOPS support GPS PPP and GPS/GLONASS PPP in static and kinematic mode. Moreover, with the help of Taiwan deformation model, TOPS can provide output result not only in ITRF but also in TWD97[2010]. An accuracy evaluation was also conducted to test if TOPS output results is reliable. According to the evaluation results: in static mode, daily solution can provide around 1 cm positioning accuracy (RMSE) in E, N and U directions; in kinematic mode, TOPS positioning accuracy (68% positioning error) can converge to about 4 cm in both horizontal and vertical directions within 1 hour. As for TOPS solutions in TWD97[2010], the RMSE of TOPS daily solution in static mode is 2.2 cm, 2.4 cm and 9.2 cm in E, N and U directions.

    摘要 I EXTENDED ABSTRACT II 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 6 1.3 研究動機與目的 8 第二章 GNSS觀測量及誤差 11 2.1 GNSS觀測量 11 2.1.1 虛擬距離觀測量 11 2.1.2 載波相位觀測量 13 2.2 觀測量誤差來源 14 2.2.1 軌道誤差 14 2.2.2 時錶誤差 16 2.2.3 天線盤相位中心誤差 17 2.2.4 相位轉繞(Phase wind-up)誤差 18 2.2.5 相對論誤差 19 2.2.6 大氣層延遲誤差 21 2.2.7 地球固體朝 24 2.2.8 多路徑效應 25 第三章 台灣線上精密單點定位服務(TOPS)網頁設計及伺服器架構 27 3.1 TOPS網頁介面及操作注意事項 27 3.2 TOPS伺服器架構與作業流程 28 第四章 PPP計算程式與坐標轉換程式設計 30 4.1 PPP計算程式 30 4.1.1 PPP計算程式作業流程 30 4.1.2 PPP數學模型 32 4.1.3 擴展型卡曼濾波器 40 4.2坐標轉換程式 45 4.2.1 參考時刻轉換 47 4.2.2 同參考時刻下的坐標框架轉換 49 第五章 精度分析實驗與成果 53 5.1 精度分析實驗 53 5.2 靜態模式定位精度分析成果 54 5.2.1 TOPS與CSRS-PPP、magicGNSS每日解定位精度比較 55 5.2.2 GPS PPP與GPS/GLONASS PPP在不同觀測長度下的定位精度 58 5.3 動態模式定位精度分析成果 63 5.4 坐標框架轉換精度分析成果 65 第六章 結論與建議 70 參考文獻 73 附錄 78

    王昱凡、陳國華(2020)。臺灣水平速度場之精度分析與應用。國土測繪與空間資訊,8(2),61-77。

    王鼎鈞 (2020)。即時精密單點定位探討。國立交通大學土木工程系所碩士論文,新竹市。

    邱煥欽(2008)。台灣e-GPS衛星基準站位移變化之研究。國立交通大學土木工程系所碩士論文,新竹市。

    林承毅、楊枝安、蔡季欣(2019)。精進水深測量作業定位方法之研究。內政部國土測繪中心自行研究報告。

    內政部國土測繪中心(2012)。大地基準及一九九七坐標系統2010年成果工作總報告。

    趙建虎、歐陽永忠、王愛學(2017)。海底地形測量技術現狀及發展勢。測繪學報,46(10),1786-1794。

    薛憲文、林佳緯(2015)。以橢球高進行水深測量之探討。「第三十七屆海洋工程研討會」發表之論文,國立中興大學。

    Alkan, R. M., İlçi, V., Ozulu, İ. M., & Saka, M. H. (2015). A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas. Measurement, 69, 1-8.

    Bisnath, S., & Gao, Y. (2009). Precise point positioning a powerful technique with a promising future. GPS World, 20(4), 43-50.

    Boucher, C., Altamimi, Z., Sillard, P., & Feissel-Vernier, M. (2004). The ITRF2000. IERS Technical Note, 31. IERS ITRS Centre.

    Cai, C., & Gao, Y. (2007). Precise point positioning using combined GPS and GLONASS observations. Journal of Global Positioning Systems, 6(1), 13-22.

    Choy, S., Bisnath, S., & Rizos, C. (2016). Uncovering common misconceptions in GNSS precise point positioning and its future prospect. GPS Solutions, 21(1), 13-22.

    Choy, S., Zhang, S., Lahaye, F., & Héroux, P. (2013). A comparison between GPS-only and combined GPS+GLONASS precise point positioning. Journal of Spatial Science, 58(2), 169-190.

    Fang H., Tian N., Wang Y., Zhou M., & Haile M. A. (2018). Nonlinear Bayesian estimation: from Kalman filtering to a broader horizon. IEEE/CAA Journal of Automatica Sinica, 5(2), 401-417.

    Goad, C. C. (1974). A modified Hopfield tropospheric refraction correction model. Paper presented at the Fall Annual Meeting American Geophysical Union, 1974.

    Goad, C. C., & Yang, M. (1997). A new approach to precision airborne GPS positioning for photogrammetry. Photogrammetric Engineering and Remote Sensing, 63(9), 1067-1077.

    Gao, Y. (2006). Precise point positioning and its challenges. Inside GNSS, 1, 16-18.

    GPS.GOV. Current and future satellite generations. Retrieved from: https://www.gps.gov/systems/gps/space/ (July 2, 2021)

    Grinter, T., & Janssen, V. (2012). Post-processed precise point positioning: a viable alternative? Paper presented at the Seventeenth Association of Public Authority Surveyors Conference, Wollongong, Australia, 19-21 March.

    Hein, H., & Pany, T. (2002). Architecture and signal design of the european satellite navigation system Galileo - Status Dec. 2002. Journal of Global Positioning Systems, 1(2), 73-84.

    Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS – global navigation satellite systems: GPS, GLONASS, Galileo, and more. Austria: SpringerWienNewYork.

    IGS. Products. Retrieved from: https://www.igs.org/products/ (July 2, 2021)

    IGS. MGEX Data and Products. Retrieved from: https://www.igs.org/mgex/data-products/#products (July 2, 2021)
    ITRF. Transformation parameters. Retrieved from: https://itrf.ign.fr/trans_para.php (July 2, 2021)

    King, M., Edwards, S., & Clarke, P. (2003). Precise point positioning: breaking the monopoly of relative GPS processing. Engineering Surveying Showcase, 10, 33-34.

    Klatt, C., & Johnson, P. (2017a). Estimating benefits to canada and the world: the canadian spatial reference system precise point positioning service. Geomatica, 71(1), 37-44.

    Klatt, C., & Johnson, P. (2017b). A survey of surveys: the canadian spatial reference system precise point positioning service. Geomatica, 71(1), 27-36.

    Kouba, J., & Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5, 12-28.

    Kirkland, E. J. (2010). In Advanced Computing in Electron Microscopy. Boston, MA: Springer US.

    Kuo, C.-Y., Chiu, K.-W., Chiang, K.-W., Cheng, K.-C., Lin, L.-C., Tseng, H.-Z., . . . Lin, H.-T. (2012). High-frequency sea level variations observed by GPS buoys using precise point positioning technique. Terrestrial, Atmospheric and Oceanic Sciences, 23(2), 209-218.

    Leandro, R. F., Santos, M. C., & Langley, R. B. (2010). Analyzing GNSS data in precise point positioning software. GPS Solutions, 15(1), 1-13.

    Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS satellite surveying. Hoboken, New Jersey: John Wiley & Sons, Inc.

    Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Scientific Report, 5, 8328.

    Mohinder S. G., Lawrence R. W., Angus P. A. (2007). Global Positioning Systems, Inertial Navigation, and Integration, Second Edition. Canada: John Wiley & Sons, Inc.

    Mireault, Y., Tétreault, P., Lahaye, F., Héroux, P., & Kouba, J. (2008). Online precise point positioning: a new, timely service from natural resources canada. GPS World, 19, 59-64.

    Matsumoto, K., Takanezawa, T., & Ooe, M. (2000). Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan. Journal of Oceanography, 56(5), 567-581.

    Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research: Solid Earth, 101(B2), 3227-3246.

    Seepersad, G., & Bisnath, S. (2014). Challenges in assessing PPP performance. Journal of Applied Geodesy, 8(3), 205-222.

    Tegedor, J., Øvstedal, O., & Vigen, E. (2014). Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou. Journal of Geodetic Science, 4(1), 65-73.

    Teunissen, P., & Montenbruck, O. (2017). Springer handbook of global navigation satellite systems. Cham, Switzerland: Springer.

    Trimble. GNSS planning online. Retrieved from: https://www.gnssplanning.com/#/settings (July 2, 2021)

    Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I., & Lichten, S. M. (1993). Effects of antenna orientation on GPS carrier phase. Manuscripta Geodaetica, 18(2), 91-98.

    Xu, Guochang. (2007). GPS: Theory, Algorithms and Applications. Berlin, Heidelberg: Springer-Verlag.

    Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005-5017.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE