| 研究生: |
黃國晃 Huang, Kuo-huang |
|---|---|
| 論文名稱: |
以機械攪磨及化學剝層製備雲母微粒之探討 The preparation of fine-grain mica by physical grinding and chemical delimination |
| 指導教授: |
申永輝
Shen, Yung-hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 攪拌研磨機 、白雲母 、化學離子 、雲母 、球磨機 、鉀離子 、物理研磨 |
| 外文關鍵詞: | exfoliate, composite, muscovite, attrition mill |
| 相關次數: | 點閱:76 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雲母的晶面間距接近奈米層級,甚為符合近年來複合材料開發之大方向,雲母具有優良的化學、物理性質且其化性安定、耐高溫、抗紫外線、折射度高、絕緣性佳,再加上自給充足,實為一種值得深入探討研究發展之礦物材。但雲母層間電荷高,吸引力強,不具膨潤性,因此粒徑縮減及其進一步之剝離相當不易進行,故利用適當的物理與化學方式進行雲母粒徑縮減和減少層間鍵結力以利後續剝離、插層作業為本研究目的。
在物理研磨方面,以相同種類、粒徑之磨體,在相同礦漿濃度的研磨條件下,攪拌研磨機之粉碎效果明顯優於球磨機。而利用效率較好的攪拌研磨機進行粒徑縮減時,高礦漿濃度(重量百分比35%)在初時研磨效率較好,但隨著研磨時間增加黏度也大幅提升,故在攪磨一段時間後低礦漿濃度(重量百分比10%)研磨效率反而較好。另外,在相同濃度下,粒徑大小隨著攪磨時間增長而縮小,但攪磨到48hr 後攪磨的效率便無法提升,而層間的鉀離子也會因雲母結構被破壞後而被釋放出來,但釋放出來的鉀離子為量不多,最多佔原礦的0.53%。
在化學離子置換方面,層間鉀離子被鋰離子交換後再微幅縮減雲母粒徑,且其CEC 值可由原來之3.42 meq/100g 大幅提升至
118.86meq/100g,CEC 值的提升對於往後複合材料之製作將會有很大的幫助。而雲母粒徑大小也與層間的鉀離子置換性有關連,由本研究顯示粒徑越小之雲母其鉀離子置換性越好,其層間鉀離子的殘留量可由原礦的48.15%下降至35.90%。
Muscovite is close to nano-sized layer structure, accord with general orientation that composite develops in recent years, in addition to having fine chemistry, physical property, stability and excellent properties in
anti-ultraviolet, anti-static, heat resistance,electricity insulation. It is worth probing into the mineral material which for one studies thoroughly.But electric charge is high among the muscovite layer. Bond strength is strong, so particle reducing and further exfoliating is quite difficult to carry on. This research purpose is utilizing proper physics and chemical way to reduce muscovite particle size and bond strength among the layer.
The respect in physics grinding: under the similar grinding condition with the same concentration of slurry and same type of media with identical diameter, the milling efficiency of the “attrition mill” is obviously superior to “ball mill”.And using the “attrition mill” having better efficiency to carry on particle reducing, the efficiency of high concentration of slurry (weight
percentage is 35%) is better at the very start. But with grinding time increasing viscosity raises quickly, so the efficiency of low concentration of slurry (weight percentage is 10%) is better contrariously. In addition,
under the same concentration of slurry, particle size will reduce with grinding time increasing, but the efficiency won,t increase after grinding 48hr.The potassium ions of layer can be released after destroying, but that is little quantity, accounts for 0.53% of the original ore at most.
The respect in the chemical ion replacing: particle size can be reduced after potassium ion exchanging with lithium ion in the layer. Its CEC value can be improved from original 3.42 meq/100g to 118.86meq/100g. And the muscovite particle size is related to potassium ion replacement among layer. Based on the test results, the particle size will be smaller if the finer potassium ion replacement of muscovite. The remnant amount of the potassium ion among layer can drop to 35.90% from 48.15% of the original ore.
1.B. Veble, “Introduction to Clay Minerals. Chemistry, origins,
uses and environmental significance", CHAPMAN & HALL, 1992。
2.鄭水林,1999,超細粉碎,中國建材工業出版社。
3.鄭水林,1998,非金屬礦加工技術與設備,中國建材工業出版社。
4.MASAYA KAWASUMI Toyota Central Research and Development
Laboratories, Incorporated, Ngakute,Aich 4801192, Japan
“The Discovery of Polymer-Clay Hybrids"。
5.王明光,"土壤環境礦物學"藝軒圖書出版社,2000年1月。
6.Klein G.& Hurlbut C. S. Jr. ,1993,Manual of Mineralogy 21thED,
John Wiley &Sons,Inc.。
7.經濟部礦業司,1993,中華民國礦產品利用、需求與流向調查,經濟
部委託研究報告。
8.經濟部礦業司,1994、1995a、1996,台灣地區礦床分佈圖及剖面圖
建置計畫,經濟部委託研究報告。
9.經濟部礦業司,1995b、2000,礦產品統計年報。
10.經濟部礦業司,1995c,向陽礦業專業區規劃開發計畫,經濟部委託
研究報告。
11. 經濟部礦業司,1993;非金屬礦工業手冊出版委員會,1991。
12.張少明、翟旭東、劉亞雲,1994,粉體工程,中國建材工業出版社。
13. Donald R.Askeland,1996,The Science and Engineering of
Materials,PWS Publishing Company。
14. 陶厚根,1998,粉體技術導論,同濟大學出版社。
15.Somasundaran P.、Brij M. Moudgil,1998,Reagents in Mineral
Technology,Marcel Dekker Inc。
16.李文鐘,選礦學,世界書局,台北市,民國60 年。
17.Schonet, K., "Physical and Technical Aspects of Very and Micro
Fine Grinding," Proceeding of Second World Congress of Particle
Tech.,Kyoto, Japan, pp.257-271,1990。
18.Austin, L.G., R,R, Klimpel and P.T. Luckie, Process
Engineering of Size Reduction:Ball Milling, Society of Mining
Engineers, New York( 1984)。
19. Wills, B.A., Mineral Processing Technology:An Introduction
to The Practical Aspects of Ore Treatment and Mineral Recovery,
Oxford,New York(1979)。
20. F. Gridi-Bennadji,B. Beneu and J.P. Laval,"Structural
transformations of Muscovite at high temperature by X-ray and
neutron diffraction," Applied Clay Science ,2006。
21. Frank Friedrich , Stefan Heissler, Werner Faubel, Rolf Nu¨esch,
Peter G. Weidler," Cu(II)-intercalated muscovite: An infrared
spectroscopic study," Vibrational Spectroscopy Vol.43
pp.427–434(2007)。
22.Bond, F.C. 1951, The Third Theory of Comminution, Meeting of
AIME in Mexico City,October 1951 in Mining Engineering, May 1952,
pp 484-494。
23. 李啟衡,1993,粉碎理論概要,冶金工業出版社。
24. Mary C. Kerr and James S. Reed,1992,Comparative Grinding
Kinetics and Grinding Energy During Ball Milling and Attrition
Milling,Ceramic Bulletin,Vol 71,No. 12,December。
25.Katsutoshi Tomita, “Experimental Transformation of 2M
Sericite into a Rectorite-Type Mixed-Layer Mineral by Treatment
with Various Salts",Clays and Clay Minerals 25, pp. 302-308,
1977。
26. Arno Kwade,1999,Wet comminution in stirred media millsresearch
and its practical application,Powder Technology 105,pp.
14-20。
27. Rajamani Raj K., Poly Songfack, B.K. Mishra,2000,Impact
energy spectra of tumbling mills,Powder Technology 108,pp.
116-121。
28. Becker M., J. Schwedes,"Comminution of ceramics in stirred
media mills and wear of grinding beads,"Powder Technology,
Vol.105,pp. 374-381(1999)。
29. Xiaofeng Yu,”The preparation and characterization of
cetyltrimethylammonium intercalated muscovite," Microporous
and Mesoporous Materials,Vol.98, pp.70–79(2007)。
30. Ikazaki F. , K. Uchida , K. Kamiya , A. Kawia , A. Gotoh ,
E. Akiba,1996,Chemically assisted dry comminution of
sericite-dry comminution method accompanied by ion-exchange,
International Journal of mineral Processing,44-45,pp. 93-100。
31. Papiper, E., A. Eckhardt and F. Muller,"Grinding of
muscovite:influence of the grinding medium," J. Materials
Science Vol.25,pp.5109-5117(1990)。
32. Caseri,W.R.,R.A.Shelden and U.W. Suter,“Preparation of
muscovite with ultrahigh specific surface area by chemical
cleavage,"Colloid and Polymer Science,Vol. 270 ,pp.392-398
(1992)。
33. Osman, M.A, W.R. Caseri and U.W. Suter, “H+/Li+ and H+/K+
Exchange on Delaminated Muscovite Mica," Journal of Colloid and
Interface Science ,Vol.198, pp.157-163(1998)。
34. Osman. M.A, C. Moor, W.R. Caseri and U.W. Suter, “ Alkai
Metals Ion Exchange on Muscovite Mica," Journal of Colloid and
Interface Science ,Vol.209 ,pp.232-239(1999)。
35. Elisabetta Mariani,Katharine H. Brodie,Ernest H. Rutter,"
Experimental deformation of muscovite shear zones at high
temperatures under hydrothermal conditions and the strength
of phyllosilicate-bearing faults in nature," Journal of
Structural Geology, Vol.28 ,pp.1569-1587(2006)。
36. Xiaofeng Yu, Liyan Zhao, Xiuxiang Gao, Xiaoping Zhang, Nianzu
Wu," The intercalation of cetyltrimethylammonium cations into
muscovite by a two-step process: I. The ion exchange of the
interlayer cations in muscovite with Li+,“Journal of Solid State
Chemistry, Vol.179,pp.1569–1574 (2006)
37. Xiaofeng Yu, Liyan Zhao, Xiuxiang Gao, Xiaoping Zhang, Nianzu
Wu," The intercalation of cetyltrimethylammonium cations into
muscovite by a two-step process: II. The intercalation of
cetyltrimethylammonium cations into Li-muscovite,"Journal of
Solid State Chemistry, Vol.179,pp.1525–1535 (2006)