| 研究生: |
謝瑋桓 Hsieh, Wei-Huan |
|---|---|
| 論文名稱: |
中高樓建築機率式耐震與倒塌風險評估之研究 Probabilistic assessment of seismic performance and collapse risk for mid-rise buildings |
| 指導教授: |
盧煉元
Lu, Lyan-Ywan |
| 共同指導教授: |
洪李陵
Hong, Li-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 238 |
| 中文關鍵詞: | 中高樓建築 、機率式風險評估 、耐震性能評估 、倒塌分析 、災損評估 、增量動力分析 、非線性歷時分析 |
| 外文關鍵詞: | mid-rise building, seismic performance assessment, collapse assessment, incremental dynamic analysis, nonlinear time history analysis |
| 相關次數: | 點閱:198 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今都巿內之集合式住宅或辦公大樓多為中高樓層之建築結構,若於地震中倒塌將造成人員嚴重的傷亡,故對於現存老舊中高樓建物實有必要建立一套合理的抗倒塌評估準則,以作為工程實務上篩檢之用。再者,對於安全較無疑慮的重要設施建築(例如:醫療院所、電腦通訊設施、科技廠房等)若於地震中受損將影響其社會功能,造成災後復救困難或重大經濟損失。因此,亦需有一套耐震性能評估方法,以了解這些設施建築的震災風險與在地震中維持功能運作的能力。然而,我國現行建築結構的耐震評估多採非線性靜力側推分析法,其缺點為無法精確模擬中高樓結構的高頻模態反應,且其方法理論架構屬於定性式方法,無法計及實際地震力與中高樓建物動力行為中複雜的不確定因子,亦無法評估影響建物功能性的非結構構件災損,同時其評估結果多以結構反應或抗震能力之大小呈現,而非以修繕金額、修繕時間或人員傷亡等業主較為熟悉的決策指標呈現。
有鑑於此,本文乃針對中高樓層建築之耐震性能評法進行探討,文中首先介紹美國最新的FEMA P-58建物耐震評估法之理論架構,該法屬機率式評法,並可同時評估結構與非結構構件的耐震性能。再以美濃地震某棟受損嚴重之中高樓RC建物為範例,說明FEMA P-58的實際操作流程。接著,再參照FEMA P-58中之機率式倒塌易損分析法與ASCE 41-13及PEER TBI文獻中判定倒塌之破壞準則,據以提出一套合理的機率式建物倒塌評估流程。最後,考量建物在不同地震下可具有不同的耐震等級,因此本文乃仿照前述倒塌評估流程,並參照國外相關規範訂定各性能等級之破壞準則後,據以提出適用於不同耐震性能等級之機率式建物耐震評估流程,以供工程界完整評估中高樓建物耐震性能之用。
The casualty risk and social impact caused by the collapse of these buildings should not be underestimated. Furthermore, if mid-rise buildings of critical facilities, e.g. hospital, high-tech factory etc., were damaged during earthquakes will also cause great economic loss. Therefore, developing suitable assessment methods to identify seismic performance levels and collapse risk of these buildings become a critical issue.
Even though traditional seismic assessment methods, which usually employ the nonlinear static pushover analysis, have been successfully applied to regular low-rise buildings, these methods are unable to reflect higher-mode effect on the responses of mid-rise buildings. Furthermore, a traditional approach usually leads to a deterministic result that could not account for the uncertainty in seismic motions and structural responses of a mid-rise building, which is usually more complicated and involves more structural uncertainties than a low-rise building.
For this reason, this paper presents a procedure to assess the risk of collapse and various seismic performance levels for mid-rise buildings based on the methodology proposed by FEMA P-58 and also acceptance criteria suggested in ASCE 41-13 and FEMA 356. To establish the fragility curves, this approach employs nonlinear time history analysis together with the method of incremental dynamic analysis (IDA) to estimate structural response parameters. For demonstration, the proposed approach is applied to assess the seismic risk of a mid-rise building that collapsed in the Meinong earthquake (2016) for various performance levels. In addition, the collapse risk of the building was assessed by using the proposed method and then compared with the observation in the Meinong earthquake.
1. ASCE 41-06 (2007) “Seismic Rehabilitation of Existing Building”, American Society of Civil Engineers
2. ASCE 41-13 (2014) “Seismic Rehabilitation of Existing Building”, American Society of Civil Engineers
3. ASCE 7-10 (2013) “Minimum Design Loads for Buildings and Other Structures”, American Society of Civil Engineers.
4. ATC-40, (1996) “Seismic Evaluation and Retrofit of Existing Concrete Building”, Applied Technology Council
5. Baker, J. W. (2015) “Efficient Analytical Fragility Function Fitting Using Dynamic Structural Analysis”, Earthquake Spectra, Vol. 31, No. 1, pp. 579-599.
6. Berg, G. V. and Da Deppo, D. A. (1960) “Dynamic analysis of elastoplastic structures”, Proc. American Society of Civil Engineers, Vol. 86, No.2, pp 35-58.
7. Clough, R.W., and Johnston, S. B. (1966) “Effects of stiffness degradation on earthquake ductility requirements”, Proc. Second Japan Earthquake Engineering, pp 227–232.
8. FEMA 273/274 (1997) “NEHRP Guidelines for the Seismic Rehabilitation of Buildings.” Federal Emergency Management Agency.
9. FEMA 356 (2000), “Prestandard and Commentary for the Seismic Rehabilitation of Buildings.” Federal Emergency Management Agency.
10. FEMA P440A (2009) “Effecs of Strength and Stiffness Degradation on Seismic Response”, Federal Emergency Management Agency.
11. FEMA P-58 (2012) “Seismic Performance Assessment of Buildings”, Federal Emergency Management Agency.
12. FEMA P-58/BD-3.7.8 (2008) “Casualty Consequence Function and Building Populatioin Model Development”, Federal Emergency Management Agency.
13. FEMA P-695 (2009) “Quantification of Building Seismic Performance Factors.”, Federal Emergency Management Agency.
14. Haselton, C. B., Deierlein, G. G. (2008) “Assessing collapse safety of modern reinforced concrete moment frame buildings.”, PEER Report No. 2007/08.
15. Ibarra L. F., Krawinkler H. (2005) “Global collapse of frame structures under seismic excitations.”, The John A. Blume Earthquake Engineering Research Center, Department of Civil Engineering, Stanford University, Stanford, Report No. 152.
16. Iwan, W. D. (1961) “The Dynamic Response of Bilinear Hysteretic Systems”, Ph.D. Thesis, California Institute of Technology, Pasadena, California.
17. Lai, J. W., Wang, S. S., Matthew, J. S., Mahin, S. A. (2015) “Seismic Evaluation and Retrofit of Existing Tall Buildings in California: Case Study of a 35-Story Steel Moment-Resisting Frame Building in San Francisco”, PEER Report No. 2015/14.
18. Lew, M., Naeim, F., Huang, S. C., Lam, H. K. and Carpenter, L. D. (2000) “The Significance of The 21 September 1999 Chi-Chi Earthquake, Taiwan, For Tall Buildings”, Structural Design of Tall Buildings, Vol 9, pp 67-72.
19. Medina, R.A. and Krawinkler, H. (2002). “Seismic demands for nondeteriorating frame structures and their dependence on ground motions.” Report No. 144, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
20. PEER-TBI (2010) “Tall Building Initiative - Guidelines for Performance-Based Seismic Design of Tall Buildings.” Pacific Earthquake Engineering Reseach Center, Berkeley, Technical Report no. 2010/05.
21. PEER-TBI Task7 (2010) “Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings” PEER Report No. 2010/111.
22. Penzien, J. (1960a) “Elastoplastic response of idealized multistory structures subjected to a strong-motion earthquake”, Proc. Second World Conf. on Earthquake Engineering, Vol. II, Tokyo and Kyoto, Japan.
23. Penzien, J. (1960b) “Dynamic response of elastoplastic frames”, Proc. American Society of Civil Engineers, Vol. 86, No. 7, pp 81-94.
24. Ramberg, W., and Osgood, W.R. (1943) “Description of Stress-Strain Curves by Three Parameters”, Tech. Note 902, National Advisory Committee on Aeronautics.
25. SEAOC Vision 2000 (1995), “A Framework for Performance-based Design”, California Office of Emergency Services.
26. Su, R., Chandler, A., Sheikh, M. and Lam, N. (2005), “Influence of Non-structural Components on Lateral Stiffness of Tall Buildings”, The Structural Design of Tall and Special Buildings, Vol. 14, pp. 143-164.
27. Takeda, T., Sozen, M. A., Nielsen, N. N. (1970), “Reinforced Concrete Response to Simulated Earthquakes.”, Journal of the Structural Division, Vol. 96, Issue 12, pp. 2557-2573.
28. Vamvatsikos, D. and Cornell, C. A. (2002) “Incremental dynamic analysis”, Earthquake Engineering and Structural Dynamics, Vol.31, Issue.3, pp. 491-514.
29. Vamvatsikos, D. and Cornell, C. A. (2006) “Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA.”, Earthquake Engineering and Structural Dynamics, Vol.35, Issue.9, pp 1097-1117.
30. Wu, C. L., Lin, S. H., Soheil Y., Weng P. W., Hwang, S. J., Elwood, K. J. and Moehle, J. P. (2009) “Design of Dynamic Collapse Testing System for 2-Story Reinforced Concrete Frames”, 3rd International Conference on Advances in Experimental Structural Engineering, San Fracisco, USA.
31. Yang, T. Y., Moehle, J., Stojadinovic, B., and Der Kiureghian, A. (2009) “Performance evaluation of structural systems: theory and implementation.” Journal of Structural Engineering, Vol. 135, No. 10, pp. 1146-1154.
32. 中華民國內政部營建署 (2011),“建築物耐震設計規範及解說”。
33. 中華民國產物保險商業同業公會 (2008),“台灣地區住宅類建築造價參考表”。
34. 吳俊霖,郭武威,黃世建,楊元森,羅俊雄 (2009),“在地震力作用下非韌性鋼筋混凝土構架倒塌行為研究”,國家地震工程研究中心,NCREE-09-025。
35. 林士涵,Soheil Yavari,吳俊霖,黃世建,Kenneth J. Elwood,楊元森,翁樸文,Beyhan Bayhan,Jack P. Moehle (2010),“非韌性配筋鋼筋混凝土構架振動台實驗研究”,國家地震工程研究中心,NCREE-10-002。
36. 曹婷婷,程炳璋 (2016),“失蹤女子林函霏找到了!維冠亡魂再添1人115死”,中國時報,2月19日。
37. 郭俊翔,張毓文,簡文郁,林哲民,溫國樑 (2016),“美濃地震之震源與地動特性”,中華民國第十三屆結構工程研討會暨第三屆地震工程研討會,桃園,Paper No. 2304。
38. 黃尹男 (2011),“美國新一代房屋結構耐震性能評估法(一)”,結構工程,第26卷,第4期,59-74頁。
39. 廖文義 (2013),“非線性歷時分析於耐震評估與消能補強之應用”,建築物實施耐震能力評估及補強講習會,6月29日。
40. 蔡孟廷,施忠賢,林裕鈞 (2017),“數值模擬探討維冠大樓在0206美濃地震中之倒塌機制”,建築學報,第99期,19-34頁。
41. 蕭輔沛,鍾立來,葉勇凱,簡文郁,沈文成,邱聰智,周德光,趙宜峰,翁樸文,楊耀昇,褚有倫,涂耀賢,柴駿甫,黃世建 (2013),“校舍結構耐震評估與補強技術手冊第三版”,國家地震工程研究中心,NCREE-13-023。
42. 賴至中 (2003),“由混凝土養護談工程品質”,技師報,第354期,第三版。
43. 簡文郁 (2017),國家地震工程研究中心強地動組提供資料:台灣地區正規化之地震危害度曲線。