簡易檢索 / 詳目顯示

研究生: 徐健軒
Xu, Jian-Xuan
論文名稱: 利用自我對準閘極掘入製程研製增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體
Enhancement Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors using Self-Aligned Gate-Recessed Process
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 70
中文關鍵詞: 氮化鎵氮化鋁鎵高電子移動率電晶體閘極掘入液相沉積法
外文關鍵詞: GaN, AlGaN, high electron mobility transistor, gate-recessed, liquid-phase deposited
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於傳統氮化鋁鎵/氮化鎵高電子遷移率電晶體通道中存在著極化效應所產生的二維電子氣,使得元件多為空乏型電晶體,這會造成元件額外的功率消耗且電路設計上需要正負偏壓來操作。因此,我們需要增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體來降低功率消耗及簡化電路上的設計。在本實驗中,我們使用閘極掘入的方法來增加閘極對通道的控制能力並提升元件的臨界電壓。此外,傳統蕭特基閘極常產生過大的閘極漏電流,導致元件效能不彰。所以在本實驗中,我們也應用了低成本、製程簡易的液相沉積法來沉積閘極介電層,藉以降低閘極漏電流並進一步提升崩潰電壓。
    我們成功的利用自我對準閘極掘入製程研製增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體,並使用液相沉積之二氧化鈦做為閘極介電層。元件最大電流密度可達到412 mA/mm,最大轉換電導值從88 mS/mm增加到159 mS/mm,臨界電壓為0.12V,次臨界擺幅為131 mV/dec,閘極漏電流和崩潰電壓也分別增加到2.73×10-7 A/mm和96 V。而元件的截止頻率和最大震盪頻率分別為6.25GHz 和8.5GHz。

    Due to the existent two-dimensional electron gas (2DEG) induced by strong polarization in the channel, conventional AlGaN/GaN high electron mobility transistor (HEMT) usually operates in depletion mode (D-mode). That will cause additional power loss and need to design circuits with negative bias and positive bias. Therefore, enhancement mode (E-mode) AlGaN/GaN HEMT is required to reduce power consumption and simplify the design of driving circuits. In this work, gate recess technique was used to improve the control of gate and increase the threshold voltage. Furthermore, Schottky gate in AlGaN/GaN HEMTs suffer from high gate leakage current which decrease the devices performance. So a low cost and less complex liquid-phase deposited (LPD) process was utilized to deposit the gate insulator, which can reduce gate leakage current and enhance breakdown voltage.
    Enhancement mode AlGaN/GaN MOSHEMT with LPD-TiO2 using self-aligned gate-recessed process was fabricated. The maximum drain current density reaches about 412 mA/mm. The maximum transconductance increases from 88 mS/mm to 159 mS/mm. The threshold voltage is 0.12V and the subthreshold swing slope is 131 mV/dec. The gate leakage current and the breakdown voltage are also enhance to 2.73×10-7 A/mm and 96 V, respectively. The cut off frequency (fT) and maximum oscillation frequency (fmax) cab be increased to 6.25 GHz and 8.5 GHz, respectively.

    摘要 III Abstract IV 誌謝 VI List of tables X List of figures XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 4 1.3 Organization 6 Chapter 2 Experiments 8 2.1 AlGaN/GaN material and theory analysis 8 2.1.1 Lattice structure 8 2.1.2 Stress 10 2.1.3 Polarization effect 12 2.2 Liquid-phase deposited TiO2 16 2.2.1 Introduction of TiO2 material 16 2.2.2 Liquid-phase deposited (LPD) system 17 2.2.3 Experimental procedures 19 2.3 Gate recess etching 21 2.3.1 Introduction 21 2.3.2 System structure & etching mechanism 22 2.3.3 Etching parameters 24 Chapter 3 Device fabrication 26 3.1 Experimental equipments 26 3.1.1 Spin coater 26 3.1.2 Mask aligner 26 3.1.3 E-gun evaporator and sputter 26 3.1.4 High temperature furnace 27 3.1.5 LPD system 27 3.1.6 ICP etcher 27 3.2 Device structure 31 3.2.1 Mesa isolation 31 3.2.2 Ohmic contact & annealing 32 3.2.3 Gate recess 32 3.2.4 TiO2 deposition 33 3.2.5 Gate formation 33 Chapter 4 Results and discussion 40 4.1 Properties of liquid-phase deposited TiO2 40 4.1.1 X-ray photoelectron spectroscopy (XPS) 40 4.1.2 Atomic force microscope (AFM) 42 4.1.3 Transmission electron microscopy (TEM) 44 4.2 Device performance 45 4.2.1 The saturated drain current 45 4.2.2 The transconductance & the threshold voltage 48 4.2.3 Subthreshold swing slope 50 4.2.4 Gate leakage current & breakdown voltage 52 4.2.5 Capacitance-voltage measurement 56 4.2.6 Flicker noise 58 4.2.7 Cutoff frequency & maximum oscillation frequency 60 Chapter 5 Conclusion 62 Chapter 6 Future work 63 References 64

    [1] L. F. Eastman and U. Mishra, "The toughest transistor yet [GaN transistors]," IEEE Spectrum, vol. 39, no. 5, pp. 28-33, May 2002.
    [2] M. Khan, G. Simin, S. Pyte, A. Monti, E. Santi and J. Hudgins, "New developments in gallium nitride and the impact on power electronics," IEEE 36th Power Electronics Specialists Conference (PESC ’05), pp. 15-26, Jun. 2005.
    [3] R. Gaska, J. W. Yang, A. Osinsky, Q. chen, M. A. Khan, A. O. Orlov and G. L., "Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates," Applied Physics Letters, vol. 72, no. 6, pp. 707-709, Feb. 1998.
    [4] A. Crespo, M. M. Bellot, K. D. Chabak, J. K. Gillespie and G. H. Jessen, "High-power Ka-band performance of AlInN/GaN HEMT with 9.8-nm-thin barrier," IEEE Electron Device Letters, vol. 31, no. 1, pp. 2-4, Jan. 2010.
    [5] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda and I. Omura, "Recessed-gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications," IEEE Transactions on Eletron Devices, vol. 53, no. 2, pp. 356-362, Feb. 2006.
    [6] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams and A. Hanser, "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
    [7] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons and M. M.Sigalas, "InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures," Applied Physics Letters, vol. 84, no. 19, pp. 3885-3887, May 2004.
    [8] Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, M. Ueno, K. Katayama and T. Nakamura, "Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar {2021} GaN substrates," Applied Physics Express, vol. 2, no. 9, Sep. 2009.
    [9] R. K. Tyagi, A. Ahlawat, M. Pandey and S. Pandey, "An analytical two-dimensional model for AlGaN/GaN HEMT with polarization effects for high power applications," Microelectronics Journal, vol. 38, pp. 877-883, 2007.
    [10] Y. Cai, Y. Zhou, K. M. Lau and K. J. Chen, "Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: from depletion mode to enhancement mode," IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2207-2215, Sep. 2006.
    [11] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada and N. Hara, "Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics," IEEE Electron Device Letters, vol. 31, no. 3, pp. 189-191, Mar. 2010.
    [12] Y. Ohmaki, M. Tanimoto, S. Akamatsu and T. Mukai, "Enhancement-mode AlGaN/AlN/GaN high electron mobility transistor with low on-state resistance and high breakdown voltage," Japanese Journal of Applied Physics, vol. 45, no. 44, pp. 1168-1170, 2006.
    [13] I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, J.-B. Park, J. C. Lee, J. Ha, J. Oh, J. Shin and U.-I. Chung, "p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current," IEEE Electron Device Letters, vol. 34, no. 2, pp. 202-204, Feb. 2013.
    [14] B. Paulus, F. J. Shi and H. Stoll, "A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SiC and III - V nitrides," J. Phys.: Condens. Matter, vol. 9, pp. 2745-2758, 1997.
    [15] M. Motyka, L. Gelczuk, M. Dabrowska-Szata, J. Serafinczuk, R. Kudrawiec and J. Misiewicz, "Photoreflectance study of partially relaxed epitaxial InGaAs on GaAs," Optica Applicata, vol. 39, no. 3, pp. 561-570, 2009.
    [16] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
    [17] V. Adivarahan, J. Yang, A. Koudymov, G. Simin and M. A. Khan, "Stable CW operation of field-plated GaN-AlGaN MOSHFETs at 19 W/mm," IEEE Electron Device Letters, vol. 26, no. 8, pp. 535-537, Aug. 2005.
    [18] Y. Chang, Y. Lee, Y. Chiu, T. Lin, S. Wu, H. Chiu, J. Kwo, Y. Wang and M. Hong, "MBE grown high k dielectrics Ga2O3(Gd2O3) on GaN," Journal of Crystal Growth, vol. 301, pp. 390-393, 2007.
    [19] S. Basu, P. K. Singh, P. W. Sze and Y. H. Wang, "AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric," Journal of The Electrochemical Society, vol. 157, pp. 947-951, 2010.
    [20] T. Y. Wu, S. K. Lin, P. W. Sze, J. J. Huang, W. C. Chien, C. C. Hu, M. J. Tsai and Y. H. Wang, "AlGaN/GaN MOSHEMTs with liquid-phase-deposited TiO2 as gate dielectric," IEEE Transactions on Electron Devices, vol. 56, no. 12, pp. 2911-2916, Dec 2009.
    [21] S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter and J. H. Yan, "MOSFET transistors fabricated with high permittivity TiO2 dielectrics," IEEE Transactions on Electron Devices, vol. 44, no. 1, pp. 104-109, Feb. 1997.
    [22] H. S. Kim, D. C. Gilmer, S. A. Campbell and D. L. Polla, "Leakage current and electrical breakdown in metal–organic chemical vapor deposited TiO2 dielectrics on silicon substrates," Applied Physics Letters, vol. 69, no. 25, pp. 3860-3862, Dec. 1996.
    [23] H. Fukuda, S. Namioka, M. Miura, Y. Ishikawa, M. Yoshino and S. Nomura, "Structural and electrical properties of crystalline TiO2 thin films formed by metalorganic decomposition," Japanese Journal of Applied Physics, vol. 38, no. 10, pp. 6034-6038, Oct. 1999.
    [24] J. Robertson, "High dielectric constant gate oxides for metal oxide Si transistors," Reports on Progress in Physics, vol. 69, no. 2, pp. 327-396, Feb. 2006.
    [25] P. J. Hansen, V. Vaithyanathan, Y. Wu, T. Mates, S. Heikman, U. K. Mishra, R. A. York, D. G. Schlom and J. S. Speck, "Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN," Journal of Vacuum Science & Technology B, vol. 23, no. 2, pp. 499-506, 2005.
    [26] B. Jeong, J. Budai and D. Norton, "Epitaxial stabilization of single crystal anatase films via reactive sputter deposition," Thin Solid Films, vol. 422, pp. 166-169, 2002.
    [27] Y. A. a. T. Fukuda, "TiO2 thin films formed by electron cyclotron resonance plasma oxidation of Ti thin films," Japanese Journal of Applied Physics, vol. 32, no. 8, pp. 1167-1168, Aug. 1993.
    [28] V. Mikhelashvili and G. Eisenstein, "Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation," Journal of Applied Physics, vol. 89, no. 6, pp. 3256-3269, Mar. 2001.
    [29] H. Nagayama, H. Honda and H. Kawahara, "A new process for silica coating," Journal of The Electrochemical Society, vol. 135, no. 8, pp. 2013-2016, 1988.
    [30] S. Jie, H. Lizhong, W. Zhaoyang and D. Guotong, "Silica and alumina thin films grown by liquid phase deposition," Materials Science Forum, Vols. 475-479, pp. 1725-1728, 2005.
    [31] H. S. Lee, D. S. Lee and T. Palacios, "AlGaN/GaN high-electron-mobility transistors fabricated through a Au-free technology," IEEE Electron Device Letters, vol. 32, no. 5, pp. 623-625, May 2011.
    [32] Q. Fan, S. Chevtchenko, X. Ni, S. J. Cho, F. Yun and H. Morkoc, "Reactive ion etch damage on GaN and its recovery," Journal of Vacuum Science & Technology B, vol. 24, no. 3, pp. 1197-1201, 2006.
    [33] F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. V. Hove, M. Germain and G. Borghs, "Low on-resistance high-breakdown normally off AlN/GaN/AlGaN DHFET on silicon substrate," IEEE Electron Device Letters, vol. 31, no. 2, pp. 111-113, Feb. 2010.
    [34] D. Kim, V. Kumar, J. Lee, M. Yan, A. M. Wowchak, P. P. Chow and I. Adesida, "Recessed 70-nm gate-length AlGaN/GaN HEMTs fabricated using an Al2O3/SiNx dielectric layer," IEEE Electron Device Letters, vol. 30, no. 9, pp. 913-915, Sep. 2009.
    [35] L. Ledernez, F. Olcaytug, H. Yasuda and G. Urban, "A modification of Paschen law for Argon," in 29th ICPIG, Cancun, Mexico, 2009.
    [36] M. Quirk and J. Serda, Semiconductor manufacturing technology, Upper Saddle River, New Jersey: Prentice Hall, 2001.
    [37] P. Kumar, S. Badrinarayanan and M. Sastry, "Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states," Thin Solid Films, vol. 358, pp. 122-130, Jan. 2000.
    [38] A. M. MALIK, "Technology and physics of gate recessed GaN-AlGaN FETs.," Germany, 2003.
    [39] Q. Zhou, S. Huang, H. Chen, C. Zhou, Z. Feng, S. Cai and K. Chen, "Schottky source/drain Al2O3/InAlN/GaN MIS-HEMT with steep sub-threshold swing and high on/off current ratio," in Electron Devices Meeting (IEDM), IEEE International, 2011.
    [40] E. J. Miller, X. Z. Dang and E. T. Yu, "Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors," Journal of Applied Physics, vol. 88, pp. 5951-5958, Nov. 2000.
    [41] P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder and J. C. M. Hwang, "GaN metal-oxide-semiconductor high electron mobility transistor with atomic layer deposited Al2O3 as gate dielectric," Applied Physics Letters, vol. 86, p. 063501, 2005.
    [42] S. Balandin, V. Morozov, S. Cai, R. Li, K. L. Wang, G. Wijeratne and C. R. Viswanathan, "Low flicker-noise GaN/AlGaN heterostructure field-effect transistors for microwave communications," IEEE Transactions on Microwave and Techniques, vol. 47, no. 8, pp. 1413-1417, Aug. 1999.
    [43] T. Oka and T. Nozawa, "AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications," IEEE Electron Device Letters, vol. 29, no. 7, pp. 668-670, July 2008.

    下載圖示 校內:2019-07-16公開
    校外:2019-07-16公開
    QR CODE