簡易檢索 / 詳目顯示

研究生: 曾敬凱
Tseng, Chin-Kai
論文名稱: 粒線體電子傳遞鏈與抗氧化分子參與登革病毒複製機轉之研究
Study of mitochondrial electron transport chain and antioxidant molecule involved in dengue virus replication
指導教授: 楊孔嘉
Young, Kung-Chia
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 112
中文關鍵詞: 登革病毒三磷酸腺苷F1-F0合成酶β 次單元微小核糖核酸-101第二型環氧化酶第一型血紅素氧化酶登革病毒蛋白酶抗病毒干擾素反應穿心蓮內脂雷公藤紅素
外文關鍵詞: DENV, mitochondria F1-F0 ATP synthase, miR-101, cyclooxygenase-2, heme oxygenase-1, DENV protease, antiviral interferon responses, andrographolide, celastrol
相關次數: 點閱:95下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據次世代定序分析,我們發現了登革病毒的感染降低了Mitochondria ATP F1-F0 synthase β subunit (ATP5B)的表現。而miRNA array分析結果顯示miR-101的表現被登革病毒降低。首先,ATP5B基因靜默或其小分子抑制劑oligomycin A也能夠抑制登革病毒之複製。利用細胞層面的實驗我們觀察到miR-101抑制ATP5B的表現可有效抑制登革病毒的複製。且我們發現miR-101提升了AMP-activated protein kinase (AMPK)的活性並且進一步的對AKT-NF-κB-CREB調控之cyclooxygenase-2 (COX-2)基因表現產生負調控。相反的過度表現外源性之COX-2將會降低miR-101造成之ATP5B基因靜默所產生的抗登革病毒之效果。值得注意的是,攜帶有miR-101之腺病毒能夠有效的保護ICR未離乳小鼠不受到登革病毒感染所產生之生命威脅。登革病毒感染及其病毒蛋白質會影響粒線體功能,進而導致粒線體氧化壓力產生,而粒線體氧化壓力被證實會誘導heme oxygenase-1 (HO-1)表現。於本論文中我們發現HO-1表現量於登革病毒感染早期提升而於感染晚期被抑制。若是在感染晚期誘導或外源性表現HO-1則可有效抑制登革病毒複製。此外,HO-1的抗病毒效果會受到其小分子抑制劑tin protoporphyrin (SnPP)的削弱。在HO-1的代謝產物中,膽綠素透過對於登革病毒蛋白酶的非競爭型的抑制效果(抑制常數為8.55 ± 0.38 μM)來達到抑制登革病毒的效果。如預期的,我們觀察到利用cobalt protoporphyrin (CoPP)誘導HO-1或是過度表現外源性之HO-1能夠回復受到登革病毒所抑制之抗病毒干擾素反應並且抑制登革病毒複製,顯示誘導HO-1表現是一個有潛力的抗登革病毒策略。基於上述之發現,我們篩選了許多天然物並且發現andrographolide以及celastrol可以顯著的延後由登革病毒造成的小鼠疾病或是死亡的發生,並且有效的降低了小鼠腦中之登革病毒複製量。在登革病毒造成之出血研究中,很有趣的我們發現提升HO-1可以保持登革感染之EA.hy926細胞單層膜的完整性以及降低登革病毒所造成之胞移作用。且其也具有保護AG129小鼠免於登革病毒造成之出血現象。本研究清楚的指出以ATP5B/COX-2以及HO-1當作標靶將可能是一個有潛力之對抗登革病毒感染或是登革相關疾病之策略。

    According to next-generation sequencing (NGS) analysis, we found that the expression of Mitochondria ATP F1-F0 synthase β subunit (ATP5B) was up-regulated by dengue virus (DENV) infection. In the microRNA (miRNA) array analysis the expression of miR-101 was down-regulated by DENV infection. Firstly, we found that ATP5B gene silencing or specific inhibitor oligomycin A treatment resulted in suppression of DENV replication. Due to down-regulation of ATP5B expression by miR-101, we observed that miR-101 also can inhibit DENV replication through increase of AMP-activated protein kinase (AMPK) activity, leading to down-regulation of the AKT-NF-κB-CREB axis-mediated cyclooxygenase-2 (COX-2) expression. Notably, exogenous expression of COX-2 attenuated the antiviral effect of miR-101. Using an ICR suckling mouse model, we demonstrated that adenovirus carrying miR-101 can protect the mice from the strike of life-threatening DENV infection. DENV infection and viral proteins cause activation of mitochondrial electron transport chain, leading to generation of mitochondrial reactive oxygen species (ROS) which has been reported to be associated with heme oxygenase-1 (HO-1) induction. In the present study, we observed that HO-1 expression levels were up-regulated at early phase of DENV infection, but down-regulated at late phase of DENV infection. When HO-1 was induced or exogenously overexpressed at late phase of DENV infection, DENV replication was effectively inhibited. The antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP). Among HO-1 metabolites, biliverdin, but not carbon monoxide and ferrous ions, non-competitively inhibited DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. DENV protease has been reported to block cellular antiviral interferon responses. As expected, HO-1 induction by cobalt protoporphyrin (CoPP) or exogenous overexpression of HO-1 could rescue DENV-suppressed antiviral interferon responses against DENV replication, indicating that HO-1 induction is a potential strategy to inhibit DENV replication. Based on these findings, we identified two natural products, andrographolide and celastrol, with high HO-1 inductive activity exhibited a significant delay in the onset of disease, mortality, and virus load in the infected mice’s brains of the DENV-infected ICR suckling mouse. In the DENV-caused hemorrhagic study, it is interesting to found that the HO-1 induction can maintain the integrity of DENV-infected EA.hy926 cell monolayer and decrease DENV-induced transcytosis in the EA.hy926 cells. The HO-1 induction also showed the protective effect against DENV-induced plasma leakage in the DENV-infected AG129 mouse. In conclusion, targeting ATP5B/COX-2 and HO-1 signaling pathways is a promising strategy against DENV infection and DENV-induced hemorrhage.

    中文摘要 I Abstract III 誌謝 V Index VI Figures Index IX Appendix Index XI Abbreviations XII INTRODUCTION 1 1. Epidemiology and current therapy of DENV 1 2. Virology of DENV and DENV subgenomic reporter system 1 3. Pathogenesis of DENV 2 4. Implication of mitochondrial function on virus replication 2 5. Implication of HO-1 on virus replication 3 6. Implication of miRNA on DENV replication 4 7. The correlation of COX-2 and DENV infection 5 8. Background of andrographolide 5 9. Background of celastrol 6 10. Implication of antioxidant molecules on DENV pathogenesis 6 11. Implication of HO-1 on vascular hyperpermeability 7 12. Relationship of HO-1 and pro-inflammatory cytokines 8 13. DENV infection mouse model 9 14. Study goal 9 MATERIALS AND METHODS 11 1. Ethics statement, experimental animals and patients 11 2. Cells and virus 11 3. Reagents 12 4. Plasmid construction 12 5. Next-generation sequencing (NGS) analysis of DENV infection 14 6. Western blotting analysis 14 7. DENV, cellular, and mice RNA quantification 15 8. ADP/ATP Ratio assay 15 9. Transfection and luciferase activity assay 16 10. Immunofluorescence assay 17 11. Expression and purification of NS2B-NS3pro 17 12. DENV NS2B/NS3 protease assays 18 13. Determination of the inhibition constant of biliverdin against DENV NS2B/NS3 protease 19 14. Plaque assay 19 15. Anti-DENV activity assay in vivo 20 16. Quantification of extracellular interferon alpha (IFN-α) 21 17. Nuclear fraction preparation 22 18. Analysis of drug synergism 22 19. Statistical analysis 23 RESULTS 24 1. NGS analysis of DENV infection 24 2. ATP5B is required for DENV replication 24 3. MiR-101 targets the ATP5B 24 4. MiR-101 inhibits DENV RNA replication and protein synthesis 25 5. MiR-101-mediated ATP5B gene silencing activates AMPK activity 26 6. MiR-101 down-regulates AKT/ NF-κB/ CREB signaling via AMPK activation 27 7. The inhibitory effect of miR-101 on DENV replication is mediated by the downregulation of COX-2 expression 28 8. MiR101 delays DENV-2-induced lethality in the suckling mouse model. 29 9. DENV infection down-regulates HO-1 promoter activity and protein expression 30 10. HO-1 induction inhibits DENV protein synthesis and RNA replication 31 11. Biliverdin inhibits DENV replication but CO and Fe3+ do not 32 12. Biliverdin inhibits DENV NS2B/NS3 protease activity 33 13. HO-1 induction rescues DENV protease-suppressed antiviral IFN response 34 14. HO-1 induction delays DENV-2-induced lethality in the suckling mouse model. 35 15. Andrographolide inhibits DENV replication, induces HO-1 expression, and delays DENV-2-induced lethality in the suckling mouse model 36 16. Celastrol inhibits DENV replication, induces HO-1 expression, and delays DENV-2-induced lethality in the suckling mouse model 37 17. DENV infection decreases HO-1 expression in patients and AG129 mice 38 18. HO-1 overexpression maintains the integrity and decreases DENV-induced transcytosis (permeated albumin) of DENV-infected EA.hy926 cell monolayer 39 19. HO-1 overexpression protects AG129 mice from DENV-induced plasma leakage 40 DISCUSSION 42 1. Alternative targets of miR-101 on DENV replication 42 2. Regulation of DENV infection on miR-101 expression 42 3. Possibility of miR-101 as a treatment strategies against DENV-induced diseases 43 4. Possibility of miR-101 as a diagnostic marker 44 5. The correlation of ROS and DENV infection 44 6. The precise amino acid on DENV protease which target by biliverdin 45 7. Alternative mechanism of HO-1 induction against DENV infection 46 8. Advantage of cell factor as a treatment strategies against DENV infection 47 9. Possibility of celastrol used in combination therapy with FDA-approved anti-HCV drugs 48 Conclusion 49 References 50 Figures 60 Appendix 97

    1 Kyle JL, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol 2008;62:71-92.
    2 Lin CH, Schioler KL, Jepsen MR, Ho CK, Li SH, Konradsen F. Dengue outbreaks in high-income area, Kaohsiung City, Taiwan, 2003-2009. Emerg Infect Dis 2012;18:1603-11.
    3 Polacek C, Foley JE, Harris E. Conformational changes in the solution structure of the dengue virus 5' end in the presence and absence of the 3' untranslated region. J Virol 2009;83:1161-6.
    4 Hsu YC, Chen NC, Chen PC, Wang CC, Cheng WC, Wu HN. Identification of a small-molecule inhibitor of dengue virus using a replicon system. Arch Virol 2012;157:681-8.
    5 McBride WJ, Bielefeldt-Ohmann H. Dengue viral infections; pathogenesis and epidemiology. Microbes Infect 2000;2:1041-50.
    6 Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, Foster GR, Jacobs M. Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 2005;79:5414-20.
    7 Ubol S, Masrinoul P, Chaijaruwanich J, Kalayanarooj S, Charoensirisuthikul T, Kasisith J. Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever. J Infect Dis 2008;197:1459-67.
    8 Liu P, Woda M, Ennis FA, Libraty DH. Dengue virus infection differentially regulates endothelial barrier function over time through type I interferon effects. J Infect Dis 2009;200:191-201.
    9 Azizan A, Sweat J, Espino C, Gemmer J, Stark L, Kazanis D. Differential proinflammatory and angiogenesis-specific cytokine production in human pulmonary endothelial cells, HPMEC-ST1.6R infected with dengue-2 and dengue-3 virus. J Virol Methods 2006;138:211-7.
    10 Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 2015;7:304ra141.
    11 Saraste M. Oxidative phosphorylation at the fin de siecle. Science 1999;283:1488-93.
    12 Yoshida M, Muneyuki E, Hisabori T. ATP synthase--a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2001;2:669-77.
    13 Claus C, Liebert UG. A renewed focus on the interplay between viruses and mitochondrial metabolism. Arch Virol 2013.
    14 Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, Lin YL. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 2012;8:e1002780.
    15 Murata T, Goshima F, Daikoku T, Inagaki-Ohara K, Takakuwa H, Kato K, Nishiyama Y. Mitochondrial distribution and function in herpes simplex virus-infected cells. J Gen Virol 2000;81:401-6.
    16 Kim SJ, Syed GH, Siddiqui A. Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog 2013;9:e1003285.
    17 Hui EK, Nayak DP. Role of ATP in influenza virus budding. Virology 2001;290:329-41.
    18 Moren C, Garrabou G, Noguera-Julian A, Rovira N, Catalan M, Hernandez S, Tobias E, Cardellach F, Fortuny C, Miro O. Study of oxidative, enzymatic mitochondrial respiratory chain function and apoptosis in perinatally HIV-infected pediatric patients. Drug Chem Toxicol 2013;36:496-500.
    19 Ando T, Imamura H, Suzuki R, Aizaki H, Watanabe T, Wakita T, Suzuki T. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA. PLoS Pathog 2012;8:e1002561.
    20 Loewe S. Relationship between stimulus and response. Science 1959;130:692-5.
    21 Sass G, Seyfried S, Parreira Soares M, Yamashita K, Kaczmarek E, Neuhuber WL, Tiegs G. Cooperative effect of biliverdin and carbon monoxide on survival of mice in immune-mediated liver injury. Hepatology 2004;40:1128-35.
    22 Reichard JF, Motz GT, Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res 2007;35:7074-86.
    23 Lehmann E, El-Tantawy WH, Ocker M, Bartenschlager R, Lohmann V, Hashemolhosseini S, Tiegs G, Sass G. The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response. Hepatology 2010;51:398-404.
    24 Zhu Z, Wilson AT, Luxon BA, Brown KE, Mathahs MM, Bandyopadhyay S, McCaffrey AP, Schmidt WN. Biliverdin inhibits hepatitis C virus nonstructural 3/4A protease activity: mechanism for the antiviral effects of heme oxygenase? Hepatology 2010;52:1897-905.
    25 Chen WC, Wang SY, Chiu CC, Tseng CK, Lin CK, Wang HC, Lee JC. Lucidone suppresses hepatitis C virus replication by Nrf2-mediated heme oxygenase-1 induction. Antimicrob Agents Chemother 2013;57:1180-91.
    26 Lee JC, Tseng CK, Young KC, Sun HY, Wang SW, Chen WC, Lin CK, Wu YH. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br J Pharmacol 2014;171:237-52.
    27 Devadas K, Dhawan S. Hemin activation ameliorates HIV-1 infection via heme oxygenase-1 induction. J Immunol 2006;176:4252-7.
    28 Tung WH, Hsieh HL, Lee IT, Yang CM. Enterovirus 71 induces integrin beta1/EGFR-Rac1-dependent oxidative stress in SK-N-SH cells: role of HO-1/CO in viral replication. J Cell Physiol 2011;226:3316-29.
    29 Protzer U, Seyfried S, Quasdorff M, Sass G, Svorcova M, Webb D, Bohne F, Hosel M, Schirmacher P, Tiegs G. Antiviral activity and hepatoprotection by heme oxygenase-1 in hepatitis B virus infection. Gastroenterology 2007;133:1156-65.
    30 Hill-Batorski L, Halfmann P, Neumann G, Kawaoka Y. The cytoprotective enzyme heme oxygenase-1 suppresses Ebola virus replication. J Virol 2013;87:13795-802.
    31 Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010;101:2087-92.
    32 Shan Y, Zheng J, Lambrecht RW, Bonkovsky HL. Reciprocal effects of micro-RNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes. Gastroenterology 2007;133:1166-74.
    33 Wu P, Jiang X, Sang Q, Annan E, Cheng T, Guo X. Inhibition of miR-274-3p increases BmCPV replication by regulating the expression of BmCPV NS5 gene in Bombyx mori. Virus Genes 2017.
    34 Castrillon-Betancur JC, Urcuqui-Inchima S. Overexpression of miR-484 and miR-744 in Vero cells alters Dengue virus replication. Mem Inst Oswaldo Cruz 2017;112:281-91.
    35 Deng W, Zhang X, Ma Z, Lin Y, Lu M. MicroRNA-125b-5p mediates post-transcriptional regulation of hepatitis B virus replication via the LIN28B/let-7 axis. RNA Biol 2017:1-10.
    36 Escalera-Cueto M, Medina-Martinez I, del Angel RM, Berumen-Campos J, Gutierrez-Escolano AL, Yocupicio-Monroy M. Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells. Virus Res 2015;196:105-12.
    37 Kanokudom S, Vilaivan T, Wikan N, Thepparit C, Smith DR, Assavalapsakul W. miR-21 promotes dengue virus serotype 2 replication in HepG2 cells. Antiviral Res 2017;142:169-77.
    38 Eisinger AL, Prescott SM, Jones DA, Stafforini DM. The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins Other Lipid Mediat 2007;82:147-54.
    39 Lin YT, Wu YH, Tseng CK, Lin CK, Chen WC, Hsu YC, Lee JC. Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation. PLoS One 2013;8:e54466.
    40 Steer SA, Corbett JA. The role and regulation of COX-2 during viral infection. Viral Immunol 2003;16:447-60.
    41 Srikiatkhachorn A, Spiropoulou CF. Vascular events in viral hemorrhagic fevers: a comparative study of dengue and hantaviruses. Cell Tissue Res 2014;355:621-33.
    42 Lin CK, Tseng CK, Wu YH, Liaw CC, Lin CY, Huang CH, Chen YH, Lee JC. Cyclooxygenase-2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents. Sci Rep 2017;7:44701.
    43 Wu WL, Ho LJ, Chang DM, Chen CH, Lai JH. Triggering of DC migration by dengue virus stimulation of COX-2-dependent signaling cascades in vitro highlights the significance of these cascades beyond inflammation. Eur J Immunol 2009;39:3413-22.
    44 Sule A, Ahmed QU, Latip J, Samah OA, Omar MN, Umar A, Dogarai BB. Antifungal activity of Andrographis paniculata extracts and active principles against skin pathogenic fungal strains in vitro. Pharm Biol 2012;50:850-6.
    45 Coon JT, Ernst E. Andrographis paniculata in the treatment of upper respiratory tract infections: a systematic review of safety and efficacy. Planta Med 2004;70:293-8.
    46 Lai YH, Yu SL, Chen HY, Wang CC, Chen HW, Chen JJ. The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis 2013.
    47 Chan SJ, Wong WS, Wong PT, Bian JS. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol 2010;161:668-79.
    48 Maiti K, Mukherjee K, Murugan V, Saha BP, Mukherjee PK. Enhancing bioavailability and hepatoprotective activity of andrographolide from Andrographis paniculata, a well-known medicinal food, through its herbosome. J Sci Food Agric 2010;90:43-51.
    49 Uttekar MM, Das T, Pawar RS, Bhandari B, Menon V, Nutan, Gupta SK, Bhat SV. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. Eur J Med Chem 2012;56:368-74.
    50 Reddy VL, Reddy SM, Ravikanth V, Krishnaiah P, Goud TV, Rao TP, Ram TS, Gonnade RG, Bhadbhade M, Venkateswarlu Y. A new bis-andrographolide ether from Andrographis paniculata nees and evaluation of anti-HIV activity. Nat Prod Res 2005;19:223-30.
    51 Seubsasana S, Pientong C, Ekalaksananan T, Thongchai S, Aromdee C. A potential andrographolide analogue against the replication of herpes simplex virus type 1 in vero cells. Med Chem 2011;7:237-44.
    52 Chen JX, Xue HJ, Ye WC, Fang BH, Liu YH, Yuan SH, Yu P, Wang YQ. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol Pharm Bull 2009;32:1385-91.
    53 Lin TP, Chen SY, Duh PD, Chang LK, Liu YN. Inhibition of the epstein-barr virus lytic cycle by andrographolide. Biol Pharm Bull 2008;31:2018-23.
    54 Ju SM, Youn GS, Cho YS, Choi SY, Park J. Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-kappaB activation in RINm5F beta cells. BMB Rep 2015;48:172-7.
    55 Youn GS, Kwon DJ, Ju SM, Rhim H, Bae YS, Choi SY, Park J. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes. Toxicol Appl Pharmacol 2014;280:42-52.
    56 Lee JY, Lee BH, Kim ND, Lee JY. Celastrol blocks binding of lipopolysaccharides to a Toll-like receptor4/myeloid differentiation factor2 complex in a thiol-dependent manner. J Ethnopharmacol 2015;172:254-60.
    57 Ryu YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, Park KH, Rho MC, Lee WS. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett 2010;20:1873-6.
    58 Strengert M, Jennings R, Davanture S, Hayes P, Gabriel G, Knaus UG. Mucosal reactive oxygen species are required for antiviral response: role of Duox in influenza a virus infection. Antioxid Redox Signal 2014;20:2695-709.
    59 Olagnier D, Peri S, Steel C, van Montfoort N, Chiang C, Beljanski V, Slifker M, He Z, Nichols CN, Lin R, Balachandran S, Hiscott J. Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog 2014;10:e1004566.
    60 Cheng YL, Lin YS, Chen CL, Wan SW, Ou YD, Yu CY, Tsai TT, Tseng PC, Lin CF. Dengue Virus Infection Causes the Activation of Distinct NF-kappaB Pathways for Inducible Nitric Oxide Synthase and TNF-alpha Expression in RAW264.7 Cells. Mediators Inflamm 2015;2015:274025.
    61 Ibeh BO, Emeka-Nwabunnia IK. Increased oxidative stress condition found in different stages of HIV disease in patients undergoing antiretroviral therapy in Umuahia (Nigeria). Immunopharmacol Immunotoxicol 2012;34:1060-6.
    62 Paracha UZ, Fatima K, Alqahtani M, Chaudhary A, Abuzenadah A, Damanhi G, Qadri I. Oxidative stress and hepatitis C virus. Virol J 2013;10:251.
    63 Wang J, Chen Y, Gao N, Wang Y, Tian Y, Wu J, Zhang J, Zhu J, Fan D, An J. Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PLoS One 2013;8:e55407.
    64 Soundravally R, Sankar P, Hoti SL, Selvaraj N, Bobby Z, Sridhar MG. Oxidative stress induced changes in plasma protein can be a predictor of imminent severe dengue infection. Acta Trop 2008;106:156-61.
    65 Seet RC, Lee CY, Lim EC, Quek AM, Yeo LL, Huang SH, Halliwell B. Oxidative damage in dengue fever. Free Radic Biol Med 2009;47:375-80.
    66 Tseng CK, Lin CK, Wu YH, Chen YH, Chen WC, Young KC, Lee JC. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep 2016;6:32176.
    67 Pereira ML, Ortolan LS, Sercundes MK, Debone D, Murillo O, Lima FA, Marinho CR, Epiphanio S. Association of Heme Oxygenase 1 with Lung Protection in Malaria-Associated ALI/ARDS. Mediators Inflamm 2016;2016:4158698.
    68 Pihan G, Rogers C, Szabo S. Vascular injury in acute gastric mucosal damage. Mediatory role of leukotrienes. Dig Dis Sci 1988;33:625-32.
    69 Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006;86:279-367.
    70 Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 2009;11:e19.
    71 Ndisang JF. Role of heme oxygenase in inflammation, insulin-signalling, diabetes and obesity. Mediators Inflamm 2010;2010:359732.
    72 Chung SW, Hall SR, Perrella MA. Role of haem oxygenase-1 in microbial host defence. Cell Microbiol 2009;11:199-207.
    73 Zompi S, Harris E. Animal models of dengue virus infection. Viruses 2012;4:62-82.
    74 Blight KJ, Kolykhalov AA, Rice CM. Efficient initiation of HCV RNA replication in cell culture. Science 2000;290:1972-4.
    75 Kato T, Matsumura T, Heller T, Saito S, Sapp RK, Murthy K, Wakita T, Liang TJ. Production of infectious hepatitis C virus of various genotypes in cell cultures. J Virol 2007;81:4405-11.
    76 Hill-Kapturczak N, Sikorski E, Voakes C, Garcia J, Nick HS, Agarwal A. An internal enhancer regulates heme- and cadmium-mediated induction of human heme oxygenase-1. Am J Physiol Renal Physiol 2003;285:F515-23.
    77 Liao BC, Hsieh CW, Liu YC, Tzeng TT, Sun YW, Wung BS. Cinnamaldehyde inhibits the tumor necrosis factor-alpha-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-kappaB activation: effects upon IkappaB and Nrf2. Toxicol Appl Pharmacol 2008;229:161-71.
    78 Niyomrattanakit P, Winoyanuwattikun P, Chanprapaph S, Angsuthanasombat C, Panyim S, Katzenmeier G. Identification of residues in the dengue virus type 2 NS2B cofactor that are critical for NS3 protease activation. J Virol 2004;78:13708-16.
    79 Yang CC, Hsieh YC, Lee SJ, Wu SH, Liao CL, Tsao CH, Chao YS, Chern JH, Wu CP, Yueh A. Novel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a high-throughput screening assay. Antimicrob Agents Chemother 2011;55:229-38.
    80 Chen KJ, Tseng CK, Chang FR, Yang JI, Yeh CC, Chen WC, Wu SF, Chang HW, Lee JC. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation. PLoS One 2013;8:e57704.
    81 Tomlinson SM, Watowich SJ. Use of parallel validation high-throughput screens to reduce false positives and identify novel dengue NS2B-NS3 protease inhibitors. Antiviral Res 2012;93:245-52.
    82 Brandt RB, Laux JE, Yates SW. Calculation of inhibitor Ki and inhibitor type from the concentration of inhibitor for 50% inhibition for Michaelis-Menten enzymes. Biochem Med Metab Biol 1987;37:344-9.
    83 Engel PC, Dalziel K. Kinetic studies of glutamate dehydrogenase with glutamate and norvaline as substrates. Coenzyme activation and negative homotropic interactions in allosteric enzymes. Biochem J 1969;115:621-31.
    84 Lee YR, Hu HY, Kuo SH, Lei HY, Lin YS, Yeh TM, Liu CC, Liu HS. Dengue virus infection induces autophagy: an in vivo study. J Biomed Sci 2013;20:65.
    85 Rana S, Blowers EC, Natarajan A. Small molecule adenosine 5'-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem 2015;58:2-29.
    86 Kim I, He YY. Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy. Front Oncol 2013;3:175.
    87 Saggioro D. Anti-apoptotic effect of Tax: an NF-kappaB path or a CREB way? Viruses 2011;3:1001-14.
    88 Kang YJ, Mbonye UR, DeLong CJ, Wada M, Smith WL. Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog Lipid Res 2007;46:108-25.
    89 El-Bacha T, Da Poian AT. Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. Int J Biochem Cell Biol 2013;45:41-6.
    90 Deshane J, Kim J, Bolisetty S, Hock TD, Hill-Kapturczak N, Agarwal A. Sp1 regulates chromatin looping between an intronic enhancer and distal promoter of the human heme oxygenase-1 gene in renal cells. J Biol Chem 2010;285:16476-86.
    91 Fredenburgh LE, Merz AA, Cheng S. Haeme oxygenase signalling pathway: implications for cardiovascular disease. Eur Heart J 2015;36:1512-8.
    92 Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Natl Acad Sci U S A 2009;106:5171-6.
    93 Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, Maringer K, Bernal-Rubio D, Shabman RS, Simon V, Rodriguez-Madoz JR, Mulder LC, Barber GN, Fernandez-Sesma A. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog 2012;8:e1002934.
    94 Der Sarkissian S, Cailhier JF, Borie M, Stevens LM, Gaboury L, Mansour S, Hamet P, Noiseux N. Celastrol protects ischaemic myocardium through a heat shock response with up-regulation of haeme oxygenase-1. Br J Pharmacol 2014;171:5265-79.
    95 Tsunetsugu-Yokota Y, Yamamoto T. Mammalian MicroRNAs: Post-Transcriptional Gene Regulation in RNA Virus Infection and Therapeutic Applications. Front Microbiol 2010;1:108.
    96 Zheng SQ, Li YX, Zhang Y, Li X, Tang H. MiR-101 regulates HSV-1 replication by targeting ATP5B. Antiviral Res 2011;89:219-26.
    97 Fu Z, Luo W, Wang J, Peng T, Sun G, Shi J, Li Z, Zhang B. Malat1 activates autophagy and promotes cell proliferation by sponging miR-101 and upregulating STMN1, RAB5A and ATG4D expression in glioma. Biochem Biophys Res Commun 2017;492:480-6.
    98 Pauley KM, Cha S, Chan EK. MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun 2009;32:189-94.
    99 Junn E, Mouradian MM. MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 2012;133:142-50.
    100 Zhou X, Xia Y, Li L, Zhang G. MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2. Cancer Biol Ther 2015;16:160-9.
    101 Tang XR, Wen X, He QM, Li YQ, Ren XY, Yang XJ, Zhang J, Wang YQ, Ma J, Liu N. MicroRNA-101 inhibits invasion and angiogenesis through targeting ITGA3 and its systemic delivery inhibits lung metastasis in nasopharyngeal carcinoma. Cell Death Dis 2017;8:e2566.
    102 Liu D, Tang H, Li XY, Deng MF, Wei N, Wang X, Zhou YF, Wang DQ, Fu P, Wang JZ, Hebert SS, Chen JG, Lu Y, Zhu LQ. Targeting the HDAC2/HNF-4A/miR-101b/AMPK Pathway Rescues Tauopathy and Dendritic Abnormalities in Alzheimer's Disease. Mol Ther 2017;25:752-64.
    103 Liu JJ, Lin XJ, Yang XJ, Zhou L, He S, Zhuang SM, Yang J. A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucleic Acids Res 2014;42:12041-51.
    104 Sakurai T, Bilim VN, Ugolkov AV, Yuuki K, Tsukigi M, Motoyama T, Tomita Y. The enhancer of zeste homolog 2 (EZH2), a potential therapeutic target, is regulated by miR-101 in renal cancer cells. Biochem Biophys Res Commun 2012;422:607-14.
    105 Xiaoping L, Zhibin Y, Wenjuan L, Zeyou W, Gang X, Zhaohui L, Ying Z, Minghua W, Guiyuan L. CPEB1, a histone-modified hypomethylated gene, is regulated by miR-101 and involved in cell senescence in glioma. Cell Death Dis 2013;4:e675.
    106 Wang X, Diao C, Yang X, Yang Z, Liu M, Li X, Tang H. ICP4-induced miR-101 attenuates HSV-1 replication. Sci Rep 2016;6:23205.
    107 Noble CG, Chen YL, Dong H, Gu F, Lim SP, Schul W, Wang QY, Shi PY. Strategies for development of Dengue virus inhibitors. Antiviral Res 2010;85:450-62.
    108 Hsieh CH, Rau CS, Jeng JC, Chen YC, Lu TH, Wu CJ, Wu YC, Tzeng SL, Yang JC. Whole blood-derived microRNA signatures in mice exposed to lipopolysaccharides. J Biomed Sci 2012;19:69.
    109 Munshi SU, Panda H, Holla P, Rewari BB, Jameel S. MicroRNA-150 is a potential biomarker of HIV/AIDS disease progression and therapy. PLoS One 2014;9:e95920.
    110 Verma P, Pandey RK, Prajapati P, Prajapati VK. Circulating MicroRNAs: Potential and Emerging Biomarkers for Diagnosis of Human Infectious Diseases. Front Microbiol 2016;7:1274.
    111 Chen Y, Azad MB, Gibson SB. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009;16:1040-52.
    112 Ivanov AV, Bartosch B, Smirnova OA, Isaguliants MG, Kochetkov SN. HCV and oxidative stress in the liver. Viruses 2013;5:439-69.
    113 Vlahos R, Stambas J, Selemidis S. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends Pharmacol Sci 2012;33:3-8.
    114 Lim W, Kwon SH, Cho H, Kim S, Lee S, Ryu WS. HBx targeting to mitochondria and ROS generation are necessary but insufficient for HBV-induced cyclooxygenase-2 expression. J Mol Med (Berl) 2010;88:359-69.
    115 Porter KM, Sutliff RL. HIV-1, reactive oxygen species, and vascular complications. Free Radic Biol Med 2012;53:143-59.
    116 El-Bacha T, Midlej V, Pereira da Silva AP, Silva da Costa L, Benchimol M, Galina A, Da Poian AT. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochim Biophys Acta 2007;1772:1158-66.
    117 Espinoza JA, Gonzalez PA, Kalergis AM. Modulation of Antiviral Immunity by Heme Oxygenase-1. Am J Pathol 2017;187:487-93.
    118 Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, Harbajan S, Lockshin RA, Zakeri Z. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis 2016;7:e2127.
    119 Shen YM, Zhang HL, Wu YH, Yu XP, Hu HJ, Dai LH. Dynamic correlation between induction of the expression of heme oxygenase-1 and hepatitis B viral replication. Mol Med Rep 2015;11:4706-12.
    120 Gutierrez-Grobe Y, Vitek L, Tiribelli C, Kobashi-Margain RA, Uribe M, Mendez-Sanchez N. Biliverdin and heme oxygenase antiviral activity against hepatitis C virus. Ann Hepatol 2011;10:105-7.
    121 Gill AJ, Kovacsics CE, Vance PJ, Collman RG, Kolson DL. Induction of Heme Oxygenase-1 Deficiency and Associated Glutamate-Mediated Neurotoxicity Is a Highly Conserved HIV Phenotype of Chronic Macrophage Infection That Is Resistant to Antiretroviral Therapy. J Virol 2015;89:10656-67.
    122 Brinkworth RI, Fairlie DP, Leung D, Young PR. Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. J Gen Virol 1999;80 ( Pt 5):1167-77.
    123 Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, Nussler N. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 2007;47:253-61.
    124 Wijayanti N, Huber S, Samoylenko A, Kietzmann T, Immenschuh S. Role of NF-kappaB and p38 MAP kinase signaling pathways in the lipopolysaccharide-dependent activation of heme oxygenase-1 gene expression. Antioxid Redox Signal 2004;6:802-10.
    125 Nagendraprabhu P, Sudhandiran G. Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Invest New Drugs 2011;29:207-24.
    126 Gretton S, Hughes M, Harris M. Hepatitis C virus RNA replication is regulated by Ras-Erk signalling. J Gen Virol 2010;91:671-80.
    127 Noble CG, Shi PY. Structural biology of dengue virus enzymes: towards rational design of therapeutics. Antiviral Res 2012;96:115-26.
    128 Tomlinson SM, Malmstrom RD, Russo A, Mueller N, Pang YP, Watowich SJ. Structure-based discovery of dengue virus protease inhibitors. Antiviral Res 2009;82:110-4.
    129 Aghemo A, Degasperi E, Colombo M. Directly acting antivirals for the treatment of chronic hepatitis C: unresolved topics from registration trials. Dig Liver Dis 2013;45:1-7.
    130 Hajj R, Milet A, Toulorge D, Cholet N, Laffaire J, Foucquier J, Robelet S, Mitry R, Guedj M, Nabirotchkin S, Chumakov I, Cohen D. Combination of acamprosate and baclofen as a promising therapeutic approach for Parkinson's disease. Sci Rep 2015;5:16084.

    無法下載圖示 校內:2023-01-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE