簡易檢索 / 詳目顯示

研究生: 鄭樵陽
Cheng, Chiao-Yang
論文名稱: 以中空陰極電弧放電沉積鑽石與類鑽碳膜及奈米壓印技術之應用
Deposition of diamond film and diamond-like carbon film by hollow cathode arc ionic plating system and its application on nanoimprinting lithography
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 223
中文關鍵詞: 中空陰極電弧鑽石薄膜奈米壓印
外文關鍵詞: hollow cathode arc, diamond film, nanoimprinting
相關次數: 點閱:97下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中主要的研究方向區分為兩部分:第一部份為建立一具有電弧放電特性與中空陰極效應之中空陰極電弧放電機制;並將其應用於不含氫之類鑽碳膜與奈米鑽石薄膜之沉積。第二部份則是將類鑽碳膜與奈米鑽石薄膜應用於微奈米壓印技術,並同時開發滾輪逆式壓印技術,將微米與奈米級之圖案轉移至可撓曲之塑膠基板上。
    在沉積類鑽碳的領域裡,一般認為不含氫的類鑽碳膜會有較佳的物理性質;然而目前業界仍是以傳統的陰極電弧的方法沉積,但礙於必須濾掉電弧產生的微粒子,則必須在沉積速率上作犧牲。因此本論文中首先利用石墨材料製作陰極與陽極,並且利用陰極屏蔽的方式,輔以高電流所產生的電阻加熱,成功地開發出結合中空陰極效應與電弧機制之不含石墨微粒子之高密度中空陰極電弧放電系統(HCA ion plating system);並且經由陽極附近的電漿特性量測電子密度達1011~1012 cm-3。此中空陰極電弧放電在電性上仍然屬於電弧放電的機制,但是避免掉了傳統電弧放電必定會產生的弧根侵蝕之問題;就此觀點而言,實為電弧放電中之一大突破。
     繼而利用此中空陰極電弧放電之機制,以中空陰極所產生之高能量離子束,削熔石墨陰極管或是陽極上之石墨,利用此作為不含氫沉積類鑽碳膜之碳源,在適當的負偏壓下,沉積出不含氫之類鑽碳膜;雖然所沉積的類鑽碳膜只有19GPa的硬度表現,此是由於所使用的HCA系統中,會因為熱輻射所產生的高熱加熱基板表面,導致在類鑽碳膜沉積時的溫度高達400℃以上;若是系統加以改良進而降低基板沉積時的溫度,則對於所沉積的不含氫類鑽碳膜之物理性質,其表現應當會有相當大的改善。
    另外,善用HCA所伴隨的高溫,並且以其具有高能量的離子束與大量的電子轟擊下,將之利用於奈米鑽石薄膜之成長;在一系列的實驗中,若單純只利用Ar與氫氣作為進料氣體,雖然可以沉積出奈米鑽石,但是由於碳源會隨時間遞減,導致不易沉積出大區域之奈米鑽石薄膜;有鑑於此,導入CH4於進料氣體中,則成功地於低壓的環境下(5×10-1 Torr)沉積出奈米鑽石連續膜;在此實驗中證實了於具有高密度的電子環境與高能量離子束轟擊的HCA系統中,在此雙重效應之下,會抑制鑽石的成長,進而增加二次成核的速率與成核密度,導致成長出奈米鑽石薄膜。
     本論文的第二部份,沉積類鑽碳膜與奈米鑽石薄膜於已圖案化之微米級Si具或是直接將奈圖案製作於類鑽碳膜與奈米鑽石薄膜上;用此作為壓印所需之奈米模具並進行熱壓印,皆可以成功的將圖案轉移至所使用的PET/ITO塑膠基板上。此方法的建立提供目前壓印模具的另一項選擇,同時不需再額外的沉積或製備抗黏著層,此對於壓印製程的縮短與模具壽命的提升皆有很大的助益。
     至於開發滾輪逆式壓印技術方面,在四吋Si-Mold上,於OTS/DMDS=1的比例下,以自組裝的方式製作抗黏著層,其圖案可以完全的被轉移至塑膠基板上,並且調變PMMA阻劑濃度與塗佈轉速,可以控制殘留層厚度(在微米尺度模板,所得到的極限為600 nm;而對於奈米圖案的模板,殘餘層厚度可降低至200nm以下)。本研究進一步利用此方法轉印四角錐狀與奈米級的圖案,也可以完全的轉移;此證實了以滾輪逆式壓印技術,不需要操作在高溫與高施力的環境,並且不需要冗長的持壓時間,即可以輕意地將Si模板圖案轉移至所使用之塑膠基板上,包括微米級的特殊圖案與奈米級圖案;並且可以利用塗佈轉速與高分子阻劑濃度來控制殘餘層的厚度。

    Hollow cathode arc (HCA) ion plating system has been developed to deposit hydrogen-free diamond-like carbon (DLC) films and nanocrystalline diamond films free of micro-particles. Then, DLC and diamond films were studied as mold materials or as anti-adhesive layer on silicon molds in imprint lithography technology.
    Although hydrogen-free DLC film was usually deposited by filtered cold cathodic arc method, the deposition rate was low and the film contained micro-particles. HCA ion plating was therefore proposed and developed in order to enhance the deposition rate and to eliminate micro- particles. HCA used a graphite tube as the hollow cathode, a graphite-ring as the anode and a graphite shield, which was mounted between the cathode and the anode to avoid arc trigger outside cathode tube. High temperature hollow-cathode was maintained at a temperature higher than 2000 oC by using Ar gas flow and high DC current over 120A to generate high densities of ions. No particle was emitted from the cathodic tube during steady-state operation owing to the shield constricting the arc discharge from the inside of the cathodic tube.
    HCA was employed to deposit hydrogen-free DLC film free of micro-particles. The hardness of hydrogen-free DLC film reached to 19 GPa at a deposition temperature of 400oC. DLC film deposited at such a high temperature can rarely exhibits such high hardness.
    Nanocrystalline diamond films were also grown by the HCA system with various compositions ratio of Ar /H2 and CH4/Ar /H2. Large-area continuous nanodiamond film can not be obtained using Ar /H2, but continuous nanodiamond film in larger area can be obtained using CH4/Ar /H2. Carbon supply from the graphite cathode tube is not enough, and a carbon source like methane (CH4), is need to deposit continuous nanodiamond film with an average grain size of 10 nm.
    DLC and diamond films were also applied to high temperature imprint lithography process anti-adhesive layers of silicon mold. DLC films were deposited by plasma-enhanced chemical vapor deposition (PECVD) onto 4” Si-molds with micro-scale feature less than 5 μm. After hot-embossing process, the pattern of Si-mold was completely transferred to PMMA layer on the flexible PET substrates and the Si substrates. When nanodiamond films were deposited by PECVD, the pattern with micro-feature was also successfully transferred to the substrates at an imprint temperature near Tg of PMMA. Furthermore, the nano-scale patterns were fabricated directly on the DLC films and nanodiamond films as imprint molds by imprint lithography process. The nano-patterns could be successfully transferred into PMMA layer precisely on Si substrates without removing the mold at high temperature.
    Finally, the modified reversal imprinting lithography by rolling process was carried out to transfer the patterned polymer layer from the mold with self-assembly monolayer of OTS/DMDS onto the flexible PET substrate. The process has been shown to be capable of transferring any nano-scale pattern features, such as dots, stripes, and tetrahedral pattern, onto the substrate. The thickness of residual layer could be controlled by varying the PMMA concentration and the spin coating speed. The reversal imprint lithography by rolling process is very effective to transfer the large-area patterns onto the substrate with high producibility and reliability.

    中文摘要……………………………………………………………Ⅰ 英文摘要……………………………………………………………Ⅲ 誌....................................................Ⅵ 目錄………………………………………………………………..ⅠⅩ 表目錄……………………………………………………….….…ⅩⅣ 圖目錄……………………………………………………………..ⅩⅥ 第一章 緒論…………………………………………..………1 前言…………………………………………………………...…….1 1.1鑽石薄膜的發展現況…………………………………………..4 1.2類鑽碳膜的發展現況.. …………………………………...……7 1.3微奈米壓印技術之發展現況.. ……………………………...…9 1.4研究動機………………………………………………….....…11 第二章 理論基礎與文獻回顧………………….............…14 2.1 物理氣相沉積法與化學氣象沉積法..………………….....14 2.1.1物理氣相沉積法(Physical Vapor Deposition) …........14 2.1.2化學氣象沉積法(Chemical Vapor Deposition) ……......17 2.2鑽石薄膜……………………………………………….…....…21 2.2.1 CVD法中鑽石之成核機制…………………………..…23 2.2.2 鑽石之成長機構……………………….………….……27 2.3 CVD法成長奈米鑽石薄膜……………………………….….29 2.3.1 提高CH4/H2比例成長奈米鑽石薄膜……………….….31 2.3.2 以負偏壓輔助成長奈米鑽石薄膜………………….….32 2.3.3 以CH4/Ar/H2成長奈米鑽石薄膜……………………..33 2.4 類鑽碳膜……………………………………………………..35 2.4.1 類鑽碳膜之組成與分類………………………….......37 2.4.2 類鑽碳膜之成長機構……………………………...…40 2.4.3 類鑽碳膜之製備方法與比較……………………...…46 2.4.4 類鑽碳膜之內應力與熱穩定性…………………...…..49 2.5 電漿原理概述……………………………………………......51 2.6 電漿鍍膜技術之簡介……………….……………………….57 2.6.1 濺鍍原理(sputtering) ………………………………….57 2.6.2 感應耦合式電漿(Inductively Coupled Plasma)產生原理 ……………………………………………………….....59 2.6.3真空電弧(Vacuum Arc) / PIII (Plasma Immersion Ion Implantation) ………………………………....…62 2.6.4 中空陰極電狐離子批覆(Hollow cathode Arc Ion Plating)…………………………………………………....65 2.7 微奈米壓印技術之概述………………………………….....71 2.7.1 Nanoimprint lithography/Hot embossing lithography………………………………………..71 2.7.2低溫壓印( Mold-Assisted Lithography ) / ( step and flash lithography ) ………………..…73 2.7.3 微觸印刷技術(Microcontact Printing) ………….…76 2.7.4逆壓式壓印技術(reversal imprinting) …………...…77 第三章、實驗參數與研究方法……………....……….……83 3.1 實驗流程………………………………………………....…..83 3.1.2 微奈米壓印部分…………………………….……..…..84 3.2 實驗設計與系統設備………………………………….……85 3.2.1 中空陰極鍍膜系統…………………………….….…86 3.2.2 微奈米壓印系統…………………………………..…88 3.2.3 電漿輔助化學沉積(PECVD)系統………….……90 3.2.4 抽氣系統…………………………………………….…91 3.2.5 壓力檢測系統…………………………………..…...…91 3.2.6 流量控制系統……………………………………….…92 3.2.7 電源供應器…………………………………………….93 3.3 實驗藥品與材料……………….………………………….…93 3.3.1 實驗氣體…………………..……………………….…93 3.3.2 實驗材料…………………………………………...…93 3.4 實驗操作……………………………………………………..95 3.4.1 中空陰極電狐(HCA)沉積不含氫之類鑽碳膜……..…95 3.4.2 中空陰極電狐(HCA)沉積奈米鑽石薄膜…………..…96 3.4.3 微奈米壓印技術之開發與應用…………….…………97 3.4.4 利用逆式壓印法進行圖案轉印………………….……99 3.5 分析與鑑定…………………………………………………100 3.5.1 電漿特性量測………………………………..…...…..100 3.5.2 表面型態觀察…………………………….…………..100 3.5.3 薄膜厚度、成長速率測定與表面圖案分佈…...……101 3.5.4 薄膜組成分析………………………………….…..…101 3.5.5 薄膜微結構分析………………….......………………101 3.5.6薄膜結構分析…………………………………………102 3.5.7 硬度值測定……………………………………...……103 第四章、中空陰極電弧沉積不含氫之類鑽碳膜與鑽石薄膜 …………………….…………………………………….104 4.1 不含微粒子之中空陰極電狐電漿系統之建立…………….…105 4.1.1 石墨陰極管-中空陽極之電極設計………………….…..105 4.1.2 導入陰極屏蔽之電極設計……………………………….107 4.1.3以石墨環抑制熱傳之電極設計…………………….…….110 4.2 中空陰極電狐電漿系統沉積不含氫之類鑽碳膜……………..113 4.2.1 無微粒子中空陰極電狐電漿之特性量測……………….113 4.2.2 以中空型陽極的電極設計沉積不含氫之類鑽碳膜…………115 4.2.3 以陽極提供碳源之電極設計沉積不含氫之類鑽碳膜…….120 4.3 以中空陰極電狐電漿在低壓下沉積奈米鑽石薄膜…………129 4.3.1 以60 sccm的Ar,在不同比例的H2下沉積奈米鑽石薄膜….130 4.3.2以50 sccm的Ar,在不同比例的H2下沉積奈米鑽石薄膜...138 4.3.3固定Ar/CH4,在不同比例的H2下沉積奈米鑽石薄膜 …….149 4.4 小結……………………………………………………….…….160 第五章、微奈米壓印技術之開發與應用………….…..……162 5.1 以類鑽碳膜/鑽石薄膜為脫膜層進行微米壓印…………….…163 5.1.1 沉積類鑽碳膜為脫膜層進行微米壓印…………..…….163 5.1.2 沉積奈米鑽石薄膜為脫膜層進行微米壓印………...…168 5.2 直接製作圖案於類鑽碳膜/鑽石薄膜並進行奈米壓印……… ………………………………………………………………….173 5.2.1 直接製作奈米圖案於類鑽碳膜上並進行奈米壓印……… ………………………………………………………………….173 5.2.2 直接製作奈米圖案於奈米鑽石薄膜上並進行奈米壓印… ………………………………………………………………….178 5.3利用滾輪逆式壓印法進行圖案轉印………………….……..…183 5.3.1 以滾輪逆式壓印進行微米級之大面積圖案轉移………. …………………………………………………………….183 5.3.2 以滾輪逆式壓印進行微米-次微米級(奈米級)之圖案 轉移…………………………………………………….…194 5.4 小結……………………………………………………………..199 第六章、總結論………........……………………………….…200 6.1中空陰極電狐沉積不含氫之類鑽碳膜與鑽石薄膜….…...…200 6.2微奈米壓印技術之開發與應用………………….…….…..202 第七章、參考文獻…………………………………….….…...205

    1. W. G. Eversole, U. S. Patent 3,030,188, 17 (1962).
    2. D. J. Poferl, N. C. Gardner, and J. C. Angus, J. Appl.
    Phys. 44(1973)1428.
    3. B. V. Spitsyn, L. L. Bovilov, and B. V. Derjaguin, J.
    Cryst. Growth 52(1981) 219.
    4. S. Matsumoto, Y. Sato, M. Tsutsimi, and N. Setaka, J.
    Mater. Sci.,. 17 (1982)3106.
    5. K. Suzuki, A. Sawabe, H. Yasuda, and T. Inzunuka, Appl.
    Phys. Let.,.50 (1987) 728.
    6. A. R. Badzian and R. C. de Vries, Mater. Res. Bull. 23
    (1988) 385.
    7. S. Nakao, M. Noda, H. Watani, and S. Maruno, Jpn J.
    Appl. Phys. 30(1991) 145.
    8. D. E. Meyer, R. O. Dillon, and J. A. Woollam, J. Vac.
    Sci. Technol., A7 (1989) 2325.
    9. H. Kamarada, K. S. Mar, and A. Hieaki, Jpn. J. Appl.
    Phys., 26 (1987) L1032.
    10. R. Ramesham, T. Roppel, and C. Ellis, J. Mater. Res.,
    6 (1991) 1278.
    11. D. M. Bhusari, J. R. Yang, T. Y. Wang, S. T. Lin, K. H. Chen, L. C. Chen, Solid State Commu., 107 (1998) 301.
    12. A. R. Krauss et al., Diamond Related Materials, 10 (2001) 1952.
    13. B. P. Bandyopadhyay, H. Ohmori, I. Takahashi, Journal of Material Processing Technology, 66 (1997) 18.
    14. J. A. Weima, W.R. Fahrner, R. Job, J. Solid State Electrochem, 5 (2001) 112.
    15. B. Bhushan, Diamond Films Technol. 4 (2)(1994) 71.
    16. A. P. Malshe, B.S. Park, W.D. Brown, H.A. Naseem, Diamond Related Materials, 8 (1999) 1198.
    17. Jayshree Seth, R.Padiyath and S.V.Babu, Incorporation of nitrogen into diamond-like carbon films, Diamond Relat.Mater.,3(1994)210.
    18. B.Dorfman, M.Abraizov and B.Pypkin, Physical properties of Diamond-Like nanocomposite films, Materils Research Society, 351(1994)43.
    19. D. Neerinck, P. Persoone, M.Sercu, A. Goel, D. Kester and D. Bray, Diamond-like nanocomposite coatings(a-C:H/a-Si:O)for tribological applications, Diamond Relat. Mater.. 7(1998)468.
    20. S. S. Camargo, J. A. L. Baia Neto, R. A. Santos, F. L. Freire, Jr. R. Carius, F. Finger, Improved high-temperature stability of Si incorporated a-C:H films, Diamond Relat. Mater., 7(1998)1155.
    21. C. Venkatraman, A. Goel, R. Lei, D. Kester, C. Outten, Electrical properties of diamond-like nanocomposite coatinfs, Thin Solid Films, 308-309(1997)173.
    22. J. Meneve, E. Dekempeneer and J.Smeets, a-Si1-xCx:H Films and Their Possibilities and Limitation for Tribological Applications, Diamond Films and Technology, 4(199423.
    23. J. Robertson, Surf. Coat. Technol., 50 (1992)185.
    24. J. Robertson, Prog. Solid State Chem., 21 (1991)199.
    25. 張瑞發,類鑽碳膜技術,化工資訊,四月號(1993) 68.
    26. J. Robertson, Properties of Diamond-Like Carbon, Surf. Coat. Technol., 50(1992)185.
    27. A. Grill, Review of the Tribology of Diamond-Like Carbon, Wear, 168(1993)143.
    28. K. Y. Eun, K. R. Lee, E. S. Yoon and H.Kong, Effect of Polymeric Debris on the Tribological Behavior of Diamond-Like Carbon Film, Surf.Coat.Technol., 86/87(1996)569.
    29. E. Mitura, S. Mitura, P. Niedzielski, Z. Has, R. Wolowiec, A. Jakubowski, J. Szmidt, A. Sokolowska, P. Louda, J. Marciniak and B. Koczy, Diamond-Like Carbon Coatings for Biomedical Applications, Diamond Relat. Mater., 3(1994)896.
    30. J. C. Angus and C. C. Hayman, Low-Pressure, Metastable Growth of Diamond and Diamondlike phases, Science, 241(1998)913.
    31. C. D. Martino, F. Demichelis and A. Tagliaferro, Determination of the sp3/sp2 Ratio in a-C:H Film by Infrared Spectrometry Analysis,Diamond Relat.Mater.,4(1995)1210.
    32. J. Robertson, Deposition Mechanism of Cubic Boron Nitride, Diamond Relat. Mater., 5(1996)519.
    33. C. Y. Hsu, L. Y. Chen and F.C.N. Hong, Properties of Diamond-Like Carbon Film Depoited by Ion Plating with a Pulsed Substrate Bias, Diamond Relat. Mater., 7(1998)884.
    34. T. Takagi, Role of Ionsin Ion-Based Film Formation, Thin Solid Films, 92(1982)1.
    35. S. B. Ogale, A. P. Malshe and S. M. Kanetkar, Deposition of Diamond-Like and Other Special Coatings by Pulsed Laser Ablation and their Post-Synthessing, Manuf.Process, 8(1993)19.
    36. J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle and K. L. Saenger, Vapor Deposition Process for Amorphous Carbon Film with sp3 Fractions Approaching Diamond, J. Appl. Phys., 70(1991)1706.
    37. P. C. Kelires, C. H. Lee and W. R. Lambrecht, Structural Studies and Electronic Properties of Diamond-Like Amorphous Carbon, J.Non-Cryst.Solid,164/166(1993)1131.
    38. A. Grill and V. Patel, Tribological Properties of Diamond-Like Carbon and Related Material, Diamond Relat. Mater.,2(1993)597.
    39. J. Meneve, E. Dekempenear and J. Smeet, a-Si1-xCx:H Films and their Possibility and Limitations for Tribological Applications,Diamond Films Technol., 4(1994)23.
    40. 許嘉元, 國立成功大學化工所博士論文, 1998。
    41. T. Miyamoto, R. Kaneko and S. Miyaka, Tribological Charactristics of Amorphous Carbon Film Investigated by Point Contact Microscopy, J.Vac.Sci.Technol.B, 9(1996) 1336.
    42. O. Amir and R. Kalish, Properties of Nitrogen-Doped Amorphous Hydrogenated Carbon Layers, Appl.Phys. lett., 70(1991)4958.
    43. N. Savvides, B. Window, J. Vac. Sic. Technol., A3(1985) 2386.
    44. J. Kulik, Y. Lifshitz, G. D. Lempert, J. W. Rabalais, D. Marton, J. Appl. Phys., 76(1994) 5063
    45. J. Krishnaswamy, A. Rengan, A. Narayan, K. Vedom, C. J. McHorgue, Appl. Phys. Lett., 54(1989)2455.
    46. Takashi Ito and Shinji Okazaki, Nature, 406 (2000) 1027.
    47. S. Y. Chou, P. R. Krauss, P. J. Restrom, Appl. Phys. Lett. 67 (1995) 3114.
    48. S.Y. Chou, P.R. Krauss, P. J. Restrom, J. Vac. Sci. Technol. B, 14 (1996) 4129.
    49. S. Y. Chou, P.R. Krauss, P. J. Restrom, Science, 272 (1995) 85.
    50. S. Zankovych, T. Hoffmanm, J. Seekamp, J. U. Bruch and C. M. Sotomayor Torres, Nanotechnology, 12 (2001) 91.
    51. A. Kumar and G. M. Whitesides, Appl. Phys. Lett., 63 (1993) 2002.
    52. Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss and G. M. Whitesides, Science, 273 (1996) 347.
    53. T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, C. G. Willson, J. Vac. Sci. Technol. B, 18 (2000) 3572.
    54. S. Johnson, D. J. Resnick, D. Mancini, K. Nordquist, W. J. Dauksher, K. Gehoski, J. H. Baker, L. Dues, A. Hooper, T. C. Bailey, J. G. Ekerdt, C. G. Willson, Microelectronic Engineering, 67–68 (2003) 221.
    55. Singh, O. R. Mesker, A. W. Levine, and Y. Arie, Appl. Phys. Lett,. 52 (1988) 1658.
    56. J. Kung and Y. Tzeng, J. Appl. Phys,. 66(1989) 4676.
    57. Tiegler, S. Roth, K. Hammer, O. Stenzel, B. Mainz, and W. Scharff, Diamond and Related Materials, 2 (1993) 413.
    58. L.W. Dini, Metal Fishing, (1993)15.
    59. A.A. Voevodin, M.S. Donley, Surf. Coat. Technol., 82 (1996) 199
    60. K. Morikawa, Heat Treatment (Japanese), 31 (1987)3.
    61. 田明波與劉德令編譯,薄膜科學與技術手冊(機械工業出版社,北京,1991年),第1頁。
    62. J. Carlsson, Thin Solid Films, 130 (1985) 261.
    63. K. F. Jensen and W. Kern, Thin Film Processes II, edited by J. L. Vossen and W. Kern (Academic Press, 1991) 283
    64. C. E. Morosanu, Thin Films by Chemical Vapor Deposition (Elsevier, New York, 1990), chapter 5
    65. E. Sirtl, I.P. Hunt, and D. H. Sawyer, J. Electrochem. Soc., 121 (1974) 919.
    66. P. K. Bachmann and R. Messier, May 15, C & EN., (1989)
    67. P. E. Pehresson, F.G. Celii, and J.E. Butler, Diamond Films And
    Coatings, edited by R. F. Davis (Noyes, 1993) 69.
    68. R. Kern, G.L. Lay, and J.J. Metois, Current Topics in Material Science, 3 (1979) 135.
    69. H. Liu and D.S. Dandy, Diamond Related Materials, 4 (1995) 1173.
    70. X. Jiang,W. J. Zhang,M. Paul and C. –P. Klages, Appl. Phys. Lett., 68 (1996) 1927.
    71. X. Jiang,W. J. Zhang and C.–P. Klages, Phy. Rev., B58 (1998) 7064.
    72. S. Iijima, Y. Aikawa, and K. Baba, Appl. Phys. Lett., 57 (1990) 2646.
    73. P.A. Denning, D.A. Stevenson, Appl. Phys. Lett., 59 (1992) 1562.
    74. M. Frenklach, in Diamond and Diamond-like Films and Coating, edited by R. E. Clausing, L.L. Horton, J.C. Angus, and P. Koidl, NATO ASI Series B: physics, Vol. 266. Plenum, New York, p. (1991)499-524.
    75. P.A. Dennig, H. Shiomi, and D.A. Stevenson, Thin Solid Films, 212 (1992) 63.
    76. D.M. Gruen, Annu. Rev. Mater. Sci., 29 (1999) 211.
    77. S.A. Catledge et al., J. Appl. Phys., 84, (1998) 6469.
    78. A. Heiman et al., J. Appl. Phys., 89, (2001)2622.
    79. D. M. Bhusari et al., Mater. Lett., 36(1998)279.
    80. D. M. Bhusari et al., J. Mater. Res., 13 (1998) 1769.
    81. Y. K. Chang et al., Phys. Rev. Lett. 82 (1999) 5377.
    82. L. C. Chen et al., J. Appl. Phys., 89 (2001) 753.
    83. V. V. Zhirnov et al., J. Vac. Sci. Technol., B 17 (1999) 666.
    84. A. Gohl et al., J. Vac. Sci. Technol., B 17 (1999) 670.
    85. B. Gunther et al., J. Vac. Sci. Technol., B 19 (2001) 942.
    86. . C.Z. Gu and X. Jiang, J. Appl. Phys., 88 (2000) 1788.
    87. X. Jiang,W. J. Zhang,M. Paul and C.–P. Klages, Appl. Phys. Lett. 68 (1996) 1927.
    88. X. Jiang,W. J. Zhang and C. –P. Klages, Phy. Rev., B58 (1998) 7064.
    89. X. Jiang, M. Fryda , C. L. Jia, Diamond Related Materials, 9(2000) 1640.
    90. X.T. Zhou and S.T. Lee et al., Appl. Phys. Lett., 80 (2002) 3307.
    91. T.S. Yang and M.S. Wong et al., J. Appl. Phys.,92 (2002) 4912.
    92. A. Erdemir et al., Diamond Related Materials, 5 (1996) 923.
    93. D. Zhou et al., J. Appl. Phys., 82 (1997) 4546.
    94. S. Jiao et al., J. Appl. Phys., 90 (2001) 118.
    95. J. Birrell et al., Appl. Phys., Lett. 81 (2002) 2235.
    96. J. Birrell et al., Diamond Related Materials, 14 (2005) 86.
    97. A. R. Krauss et al., Diamond Related Materials, 10 (2001) 1952.
    98. A. V. Sumant et al., Mat. Res. Soc. Symp. Proc., E5.33.1 (2001). 657
    99. D. M. Gruen, MRS Bulletin, 26 (2001) 771.
    100. T. Sharda and M. Umeno et al., Diamond Related Materials, 10(2001) 561.
    101. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, Chapter 2, John Wiley & Sons, Canada, 1991.
    102. 余樹貞, 晶體之結構與性質, 第12章, 渤海堂文化公司, 台北台灣, (1993).
    103. J. C. Angus and C. C. Hayman, Low-Pressure, Metastable Growth of Diamond and Diamondlike phases, Science, 241(1998)913.
    104. 張瑞發,類鑽碳膜技術, 化工資訊, 四月號(1993) 68.
    105. C. D. Martino, F. Demichelis and A. Tagliaferro, Determination of the sp3/sp2 Ratio in a-C:H Film by Infrared Spectrometry Analysis, Diamond Relat.Mater., 4(1995)1210.
    106. I. Garnev and V. Orlinov, Evaluation and Parametric Modeling of Abrasive Wear Resistance of Ion-Plated Thin DLC Eilms, Diamond Relat.Mater., 4(1995)1041.
    107. J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle and K. L. Saenger, Vapor Deposition Process for Amorphous Carbon Film with sp3 Fractions Approaching Diamond, J.Appl.Phys., 70(1991)1706.
    108. P. C. Kelires, C. H. Lee and W. R. Lambrecht, Structural Studies and Electronic Properties of Diamond-Like Amorphous Carbon, J.Non-Cryst.Solid, 164-166(1993)1131.
    109. J. Robertson, Deposition Mechanism of Cubic Boron Nitride, Diamond Relat. Mater., 5(1996)519.
    110. C. Y. Hsu, L. Y. Chen and F. C. N. Hong, Properties of Diamond-Like Carbon Film Depoited by Ion Plating with a Pulsed Substrate Bias, Diamond Relat. Mater., 7(1998)884.
    111. J. Robertson, The Deposition Mechanism of Diamond-Like a-C and a-C:H, Diamond Relat.Mater. 3(1994)361.
    112. J. Robertson, Deposition Mechanism of a-C and a-C:H, J. Noncryst. Solid, 164-166(1993)1115.
    113. C. Z. Wang and K. M. Ho, Structure Dynamics and Electronic Properties of Diamondlike Amorphous Carbonhys.Rev.Lett., 71(1993)1184.
    114. J. C. Angus, Diamond and Diamond-Like Films, Thin Solid Films, 216(1992)126.
    115. W. Pompe, H. J. Scheibe, A. Richter and H. D. Bauer, On the Influence of Residual Stresses and Density Fluctuations on the Crystallization of Amorphous Carbon Films, Thin Solid Films, 144(1986)77.
    116. J. Robertson, Properties of Diamond-Like Carbon, Surf. Coat. Technol., 50(1992)185.
    117. A. Grill, Review of the Tribology of Diamond-Like Carbon, Wear, 168(1993)143.
    118. A. Grill and V. Patel, Tribological Properties of Diamond-Like Carbon and Related Material, Diamond Relat. Mater., 2(1993)597.
    119. J. Meneve, E. Dekempenear and J. Smeet, a-Si1-xCx:H Films and their Possibility and Limitations for Tribological Applications, Diamond Films Technol., 4(1994)23.
    120. T. Miyamoto, R. Kaneko and S. Miyaka, Tribological Charactristics of Amorphous Carbon Film Investigated by Point Contact Microscopy, J. Vac. Sci. Technol. B, 9 (1995)1336.
    121. O. Amir and R. Kalish, Properties of Nitrogen-Doped Amorphous Hydrogenated Carbon Layers, Appl.Phys., 70(1991)4958.
    122. K. Enkce, H. Dimign and H. Hubsch, Fricitional Properties of Diamondlike Carbon Layers, Appl.Phys.Lett., 36(1980)291.
    123. B. Oral, K. H. Ernst and C. J. Schmutz, Adhesion and Structural Changes of Multi-Layered and Multi-Doped a-C:H Films during Annealing, Diamond Relat.Mater., 5(1994)932.
    124. D. Drees, J. P. Celis, E. Delis, E. Dekempeneer and J.Meneve, The Electrochemical and Wear Behavior of Amorphous Diamond-Like Carbon Coatings and Multilayered Coatings in Aqueous Environments, Surf.Coat.Technol., 86-87(1996)580.
    125. A. Erdemir, C. Bindal, G. R. Fenska, C. Zuiker and P. Wilbur, Characterization of Transfer Layets Formation on Surfaces Sliding Against Diamond-Like Carbon, Surf.Coat.Technol., 86-87(1996)692.
    126. 許嘉元, 國立成功大學化工所博士論文, 1998.
    127. 符永豪, 國立成功大學資源工程研究所碩士論文,1998.
    128. E. Liu, B. Blanpain, E. Dekempeneer, F. Loffler, J. P. Celis and J. R. Roos, Mechanical and Tribological Evaluation of the ThermalStability of a-C and a-C:H Coatings, Diamond Films Technol.,4(1994)37.
    129. J. Deng and M. Braun, DLC Multilayer Coctings for Wear Protection, Diamond Relat.Mater., 4(1995)936.
    130. L. Jayshree Seth, R. Padiyath and S. V. Babu, Incorporation of nitrogen into diamond-like carbon films, Diamond Relat.Mater., 3(1994)210.
    131. B. Dorfman, M. Abraizov, B. Pypkin, Physical properties of Diamond-Like nanocomposite films, Materils Research Society, 351(1994)43.
    132. D. Neerinck, P. Persoone, M. Sercu, A. Goel, D. Kester, D. Bray, Diamond-like nanocomposite coatings(a-C:H/a-Si:O)for tribological applications, Diamond Relat. Mater., 7(1998)468.
    133. .S. Camargo, Jr. A. L. Baia Neto, R. A. Santos, F. L. Freire, Jr, R. Carius, F.Finger, Improved high-temperature stability of Si incorporated a-C:H films, Diamond Relat. Mater., 7(1998)1155.
    134. C. Venkatraman, A. Goel, R. Lei, D. Kester, C. Outten, Electrical properties of diamond-like nanocomposite coatinfs, Thin Solid Films, 308-309(1997)173.
    135. J. Meneve, E. Dekempeneer and J. Smeets, a-Si1-xCx:H Films and Their Possibilities and Limitation for Tribological Applications, Diamond Films and Technology, 4(1994)23.
    136. 張瑞發, 類鑽碳膜技術, 化工資訊, 四月號(1993)68.
    137. 曾煥華, 電漿的世界 第一章, 銀禾文化事業有限公司, 1987
    138. Brian Chapman, Glow Discharge Processes, John Wiley & Sons, Inc, United State of America, 1980, Chapter 5
    139. 洪昭南, 電漿反應器, 化工技術, 第三卷, 第三期,(1995) 124
    140. J. R. Roth, Industrial Plasma Engineering-Volume 1: Principles, Institute of Physics Publishing, London, 1995
    141. 陳寶清, 真空表面處理工學, 第三篇, 傳勝出版社, 台北台灣, 1992
    142. 陳良益, 成功大學化工所碩士論文, 1998.
    143. 陳熹棣編譯, 高週波基礎理論與應用, 第3篇,全華科技股份有限公司, 台北台灣, 1995.
    144. J. R. Roth, Industrial Plasma Engineering-Volume 1:Principles,Institute of Physics Publishing,London,1995
    145. James F. Shackelford, William Alexander, Juns. Park, , Materials Science and Engineering Handbook, 94-101.
    146. M. A. Lieberman, A . J. Lichtenberg, Principles of Plasma
    147. 洪昭南, 電漿反應器, 化工技術, 1995
    148. 洪昭南, 郭有斌, 以化學氣相沉積法成長半導體薄膜, 化工技術, 2000
    149. C.M. Ferreira and J.L. Delcroix, J. Appl. Phys.,49, (1978) 2380.
    150. J. L. Delcroix & A. R. Trindade, Advances In Electronic & Electron Physics, 35(1974)88.
    151. M.T. Ngo, K. H. Schcoenbach, G. A. Gerdin, and J. H. Lee, IEEE Trans. Plasma Sci., 18 (1990) 669.
    152. A. Guntherschultze, Z. Phys., 19(1923)313.
    153. J. S. Luce, Intense gaseous discharge. Proc. Int. Conf. Peaceful Uses At. Energy, 2nd,(1958)31
    154. L. M. Lidsky, S. D. Roth;eder, D. J. Rose, S. Y. Yoshikaswa, C. Michelson and R. J. Markin, J. Appl. Phys. 33(1962)2490.
    155. J. L. Delcroix, H. Minoo and A. R. Trindade, Rev. Roum. Phys., 13(1968)401.
    156. G. J. Ahsmann and W. Van Benthem, Nat. Lab. Philips Rep., (1966)4112
    157. J. C. Boulassier, M. Clement, J. Cuvellier, M. Dagai and C. Manus, Proc. Int. Conf. Phenomena Ionized Gases, 6th, 1 (1963)359
    158. R. Cano, M. Mattioli and B. Zanfagna, Rap. C.E.A. (1968)R.2935
    159. M. Hudis, K. Chung and D. J. Rose, J. Appl. Phys., 39 (1968)3297
    160. A. Lorente-Arcas, Plasma Phys., 14 (1972)651.
    161. A. R. Trindade, Port. Phys., 6(1970)160.
    162. H. Minoo, Proc. Int. Conf. Hollow Cathode Discharge, Appl. 1st (1971)15.
    163. A. Morosov and A. V. Troimov, Presented at Proc. Int. Conf. Hollow Cathode Discharge, Appl. 1st (1971)54.
    164. D. A. Huchital and J. D. Regden, Rev. Sci. Instrum., 39 (1968)1472.
    165. J. L. Delcroix, H. Minoo, Z. Szili and A.R. Trindade, C. R. Acad. Sci. Ser., B270(1970)173.
    166. W. C. Jennings, J. H. Noon and E. H. Holt, Rev. Sci. Instrum., 41 (1970)322
    167. J. Jolly, Proc. Int. Conf. Hollow Cathode Discharge, Appl. 1st (1971)20.
    168. R. Goldstein, E. Pawlick and L. C. Wen, Jet. Prop. Lab. (Pasadena) Tech. Rep., 32 (1971)1536.
    169. B. P. Day, D. G. Fearn and G. F. Burton, Farnborough. RAE Tech. Rep. (1971)71102.
    170. A. Richard, M. Touzeau and J. L. Delcroix, Proc. Int. Conf. Gas Discharge, 2nd (1972)376.
    171. J. A. Burkhart, J. Spacer, 8 (1971)240.
    172. H. Minoo, Rapp. Orsay, (1969)LP94.
    173. J. C. Woo and D. J. Rose, Phys. Fluids, 10 (1967)893.
    174. Ling jie Guo, Peter R. Krauss and Stephen Y. Chou, Appl. Phys. Lett., 71 (1997) 1881.
    175. Mingtao Li, Lei Chen, and Stephen Y. Chou, Appl. Phys. Lett., 78 (2001)3322.
    176. Michael D. Austina, and Stephen Y. Chou, Appl. Phys. Lett., 81 (2002) 4431.
    177. Zhaoning Yu, Wei Wu, Lei Chen, and Stephen Y. Chou, J. Vac. Sci. Technol,. B 19 (2001) 2816.
    178. Jian Wang, Steven Schablitsky, Zhaoning Yu, Wei Wu, and Stephen Y. Chou, J. Vac. Sci. Technol. B 17 (1999) 2957.
    179. Mingtao Li, Jian Wang, Lei Zhuang, and Stephen Y. Chou, Appl. Phys. Lett.., 76 (2000) 673.
    180. Haisma, J. Verheijen, M. Heuvel, K. Berg, J. J. Vac .Sci. Technol., B14 (1996) 4124.
    181. C. G. Willson, M. E. Colburn, United States Patent, 6, 334, 960 (2002)
    182. P. Ruchhoefft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S. Damle, M. Stewart, J. Ekerdt, J. C. Wolfe, C. G. Willson, J. Vac .Sci. Technol,. B 17 (1996) 2965.
    183. M. Colburn, A. Grot, B. J. Chio, M. Amistoso, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt, C. G. Willson, J. Vac .Sci. Technol,. B19 (2001) 2162.
    184. S. C. Johnson, T. C. Bailey, M. D. Dickey, B. J. Smith, E. K. Kim, A. T. Jamieson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, SPIE Microlithography Conference, 2003.
    185. D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquista, T. C. Bailey, S. Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, N. Schumaker, SPIE Microlithography Conference, 2003
    186. I. McMackin, P. Schumaker, D. Babbs, J. Choi, W. Collison, S. V. Sreenivasan, N. Schumaker, M. Watts, R. Voisin, SPIE Microlithography Conference, 2003
    187. Y. N. Xia, J. Tien, D. Qin, G. M. Whitesides, Langmuir, 12 (1996) 4033
    188. Y. N. Xia, M. Mrksich, E. Kim, G. M. Whitesides, J. Am. Chem. Soc., 117 (1995) 9576.
    189. A. Kumar, H. A. Biebuyck, G. M. Whitesides, Langmuir, 10 (1994) 1498.
    190. A. Carvalho, M. Geissler, H. Schmid, B. Michel, E. Delamarche, Langmuir, 18 (2002) 2406.
    191. [63] J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, G. M. Whitesides, J. Am. Chem. Soc. 124 (2002) 1576.
    192. N. B. Larsen, H. Biebuyck, E. Delamarche, B. J. Michel, J. Am. Chem. Soc., 119 (1997) 3017.
    193. N. J. Jeon, K. Finnie, K. Branshaw, R. G. Nuzzo, Langmuir, 13 (1997) 3382.
    194. X. Cheng, L. J. Guo, and S. W. Pang, J. Vac. Sci. Technol,. B 20 (2002) 2872.
    195. [70] L. J. Guo and S. W. Pang, J. Vac. Sci. Technol. B 20 (2002) 2881
    196. A. C. Ferrari and J. Robertson, Phys. Rev. B 61 (2000) 14095.
    197. M.A.. Capano, N.T. McDeutt, R.K. Singh and F. Qian, “Characterization of Amorphous Carbon Thin Films,” J. Vac. Sci. Technol. A 14 (1996) 431.
    198. J.Robertson, Diamond Relat. Mater., 3 (1994) 361.
    199. D.R. McKenzie, D. Muller, and B.A. Pailthorpe, Phys. Rev. Lett., 67 (1991) 773
    200. V.S. Veerasamy, G.A.J. Amaratunga, W.I. Milne, J. Robertson and P.J. Fallon, J. Non-Cryst. Solids, 164-166 (1993) 1111.
    201. M.A. Tamor, Mater. Res. Soc. Symp. Proc., 383 (1995) 423.
    202. X.L. Peng, T.W. Clyne, Diamond and Related Materials, 7 (1998) 944.
    203. Simone Anders, Javier Diaz, Joel W. Agerlll, Appl. Phys. Lett., 71 (1997) 3367.
    204. S. Yugo, T. Kanai, and T. Muto, Appl. Phys. Lett. 58 (1991) 1036.
    205. T. Sharda, M. Umeno et al., Diamond Related Materials 10 (1995) 352.
    206. A. Sawabe, and T. Inuzuka, Appl. Phys. Lett. 46 (1985) 15.
    207. A. Sawabe, and T. Inuzuka, Thin Solid Films, 137 (1986) 89.
    208. S. Nakao, M. Noda et al., J. Gryst. Growth, 115 (1991) 313.
    209. A. Y. Fadeev and T. J. McCarthy, Langmuir, 16(2000)7268.
    210. W. R. Ashurst, C. Carraro and Roya Maboudian, IEEE Transactions on Device & Materials Reliability, 3 (2003)173.
    211. Y. X. Zhuang, O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck and J. Koblitz, J. Micromech. Microeng., 16(2006)2259.

    下載圖示 校內:2012-07-14公開
    校外:2012-07-14公開
    QR CODE