簡易檢索 / 詳目顯示

研究生: 張峻嘉
Chang, Chun-Chia
論文名稱: 旋轉液柱的斷裂現象分析
A Study on the Breakup of a Rotating Liquid Jet
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 97
中文關鍵詞: 液柱斷裂長度Rayleigh Instability旋轉速率液滴遲滯現象
外文關鍵詞: Breakup Length, Rayleigh Instability, Rotating Speed, Drops, Hysteresis
相關次數: 點閱:111下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為分析噴流液柱在不同流率和旋轉速度條件下的特徵變
    化。研究中以常溫的水為工作流體,將液柱噴嘴搭配一組可調速的旋轉機構,藉由改變不同的液柱直徑(dj)、流體流率(Q)與噴嘴旋轉速率(w),以探討液柱長度( j L )與液柱斷裂成液滴之特性。此實驗證實外部旋轉將會使得液柱的斷裂長度減少,且隨著轉速上升其斷裂長度更加縮短,此外,在同一轉速、流量的情況下,較大的液柱直徑受旋轉效應明顯,其縮短幅度加劇。在較大液柱直徑(>1100 micrometer)之實驗中,噴流液柱會有遲滯現象(Hysteresis)的發生,即是在間歇滴落區(D)時,將其流量增加而達到液柱型態(J),與流體處在液柱型態區(J)將其流量減低而達到間歇滴落區(D)時所面臨的臨界流量並不相同。而在液滴成型方面,依實驗結果將液柱斷裂型態分為: 穩定液滴、兩顆液滴追撞與多顆液滴追撞。研究結果發現,旋轉效應會使得液柱斷裂更加不穩定,兩顆液滴追撞或是多處頸縮(Multi-position Necking)造成之多顆液滴追撞將會頻繁產生。

    This research is dedicated to analyzing the characteristic of a liquid jet under various conditions, for example, under different flow rates and rotating speeds. In this study, we found that the imposed rotation would shorten the breakup length of a liquid jet due to the extra disturbance. On the other hand, hysteresis behavior occurred during the use of relatively large nozzle diameters, which indicates that the critical flow rate of the transition from dripping to jetting (DJ) is different from that from jetting to dripping (JD). Consequently, we further analyzed the critical rotating speed (JD) and the critical flow rate (DJ) in this hysteresis zone. As for the last part of this study, once the breakup patterns had been deduced, we could divide the breakup modes into three distinguishable patterns basically by how the droplets formed: steady formation, two-drop coalescence, and multiple-drop coalescence, respectively. Lastly, the mutual interaction between these three patterns and how the rotation affected the outcomes of the liquid jet were determined in this research.

    Contents I List of tables III List of figures IV Nomenclature VII 1. Introduction 1 1.1 Disintegration of a Liquid Jet 2 1.1.1 Rayleigh Instability and Breakup Behavior 2 1.1.2 Nonlinear Analysis 10 1.1.3 Drop Size Prediction 14 1.2 Dripping Flow 17 1.3 Transition from Dripping to Jetting 19 1.4 Rotating Liquid Jet 21 1.5 Motivation and Objectives 26 2. Experimental Apparatus and Methods 27 2.1 RLC System 27 2.2 Experimental Methods 29 3. Results and Discussion 31 3.1 Characteristics of a Non-Rotating Liquid Jet 31 3.1.1 Breakup Length of a Jet and Flow Transition 31 3.1.2 Breakup Categories 36 3.1.3 Drop Size from the Breakup of a Liquid Jet 38 3.1.4 Time Interval of the Breakup of a Liquid Jet 40 3.2 Characteristics of a Rotating Liquid Jet 44 3.2.1 Breakup Length of an RLC 44 3.2.2 Transition Point 46 3.2.3 Breakup Categories 48 3.2.4 Drop Size from the Breakup of an RLC 50 3.2.5 Time Interval of the Breakup of an RLC 51 4. Conclusions 53 4.1 Breakup Length of a Jet 53 4.2 Transition Point 53 4.3 Breakup Categories 54 4.4 Drop Size from the Breakup of a Jet 54 4.5 Breakup Interval 55 5. References 56 6. Table and Figures 60 7. Appendix 95 8. List of Publications 97

    1. Savart, F., “Mémoire sur la constitution des veines liquides lancées pardes orifices circulaires en mince paroi,” Ann. Chem. Phys., Vol. 53, p.337, 1883.
    2. Plateau, J., “Statique experimentale et theorique des liquids soumis aux seules forces moleculaires Cited by Lord Rayleigh,” Theory of Sound, Vol. 2, p. 363, 1945.
    3. Lord Rayleigh, “On the capillary phenomena of jet,” Proc. R. Soc. London, Vol. 29, p. 71, 1879.
    4. Weber, C., “On the breakdown of a fluid jet,” ZAMM 1, Vol. 11, p. 136. 1931.
    5. Chandrasekhar, S., Hydrodynamics and Hydromagnetic Stability, Oxford University Press, Oxford, 1961.
    6. Tomotika, S., “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. London, Ser. A, Vol. 150, p. 322, 1935.
    7. Donnelly, R. J. and Glaberson, W., “Experiments on the capillary instability of a liquid jet,” Proc. R. Soc. London, Ser. A, Vol. 290, p. 547, 1966.
    8. Faidley, R.W. and Panton, R. L., “Measurement of Liquid Jet Instability Induced by Surface Tension Variations,” Exp. Therm. Fluid Sci., p. 383, 1990.
    9. Tyler, E., and Richardson, E. G., “The characteristic curves of liquid jets,” Proc. Phys. Soc. London, Vol. 37, p. 297, 1925.
    10. Haenlein, A., “Disintegration of a liquid jet.” NACA Tech, Note TN 659, 1932.
    11. Grant, R. P., and Middleman, S., “Newtonian jet stability.” AIChE Journal, Vol. 12, p. 669, 1966.
    12. Mccarthy, M. J. and Molloy, N. A., “Review of stability of liquid jets and the influence of nozzle design.” The Chemical Engineering Journal, Vol. 7, p. 1, 1974.
    13. Langhaar, H. L., “Steady flow in the transition lengths for incompressible laminar flow in rectangular ducts.” J. Appl. Mech. A, Vol. 9, p. 55, 1942.
    14. Iciek, J., “Hydrodynamics of a free, cylindrical liquid jet.” Int. J. Multiphase Flow, Vol. 8, p. 239, 1982.
    15. Lin, S. P. and Reitz, R. D., “Drop and spray formation from a liquid jet,” Ann. Rev. Fluid Mech., Vol. 30, p. 85, 1998.
    16. Goedde, E. F. and Yuen, M. C., “Experiments on liquid jet instability,” J. Fluid Mech., Vol. 40, p. 495, 1970.
    17. Pimbley, W. T. and Lee, H. C., “Satellite droplet formation in a liquid jet,” IBM J. Res. Dev., Vol. 21, p. 21, 1977.
    18. Chaudhary, K. C. and Maxworthy, T., “The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behavior before droplet formation,” J. Fluid Mech., Vol. 96, p. 275, 1980.
    19. Bogy, D. B., “Drop formation in a circular liquid jet.” Annu. Rev. Fluid Mech. , Vol. 11, p. 207, 1979.
    20. Yuen, M. C., “Non-linear capillary instability of a liquid jet.” J. Fluid Mech., Vol. 33, p. 151, 1968.
    21. LaFrance, P., “Non-linear breakup of a laminar liquid jet,” Phys. Fluids, Vol. 18, p. 428, 1975.
    22. Lee, H. C., “Drop formation in a liquid jet.” IBM J. Res. Dev., Vol. 18, p. 364–369, 1974.
    23. Vassallo, P. and Ashgriz, N., “Satellite formation and merging in liquid jet,” Proc. R. Soc. London, Ser. A, Vol. 433, p. 269, 1991.
    24. Kowalewski, T.A., “On the separation of droplets from a liquid jet,” Fluid Dynamics Research, Vol. 17, p.121, 1996.
    25. Eggers, J., and Villermaux, E., Physics of liquid jets. Reports on progress in physics, Vol. 71, 036601, 2008.
    26. Hoeve, W., Gekle, S., Snoeijer, J. H., Versluis, M., Brenner, M.P., and Lohse, D., “Breakup of dimunitive Rayleigh jets.” Phys. Fluids., Vol. 22, 122003, 2010.
    27. Brenner, M. P., Shi, X. D., and Nagel, S.R., “Iterated instabilities during droplet fission.” Phys. Rev. Lett., Vol. 73, p. 3391, 1994.
    28. Ashgriz, N., and Mashayek, F., “Temporal analysis of capillary jet breakup.” J. Fluid Mech., Vol. 291, p. 163, 1995.
    29. Rutland, D. F. and Jameson, G. J., “Theoretical prediction of the sizes of drops formed in the breakup of capillary jets,” Chem. Eng. Sci., Vol. 25, p. 1689, 1970.
    30. Teng, H., Kinoshita, C. M., and Masutani, S. M., “Prediction of droplet size from the breakup of cylindrical liquid jets.” Int. J. Multiphase Flow, Vol. 21, No. 1, p.129, 1995.
    31. Hilbing, J. H., Heister, S. D., and Spangler, C. A., “A boundary element method for atomization of a finite liquid jet.” Atom. Sprays, Vol. 5, p. 621, 1995.
    32. Rohani, M., Jabbari, F., and Dunn-Rankin, D., “Breakup control of a liquid jet by disturbance manipulation.” Phys. Fluids, Vol. 22, 107103, 2010.
    33. Tate, T., “On the magnitude of a drop of liquid formed under different circumstances.” Phil. Mag., Vol. 27, p. 176, 1864.
    34. Harkins, W. D., and Brown, F. E., “The determination of surface tension (Free surface energy), and the weight of falling drops: the surface tension of water and benzene by the capillary height method.” J. Am. Chem. Soc., Vol. 41, p. 499, 1919.
    35. Martien, P., Pope, S. C., Scott, P. L., and Shaw, R. S., “The chaotic behavior of the leaky faucet.” Phys. Rev. Lett., Vol. 110A, p. 399, 1985.
    36. Wu, X., and Schelly, Z. A., “The effects of surface tension and temperature on the nonlinear dynamics of the dripping faucet.” Physica D Amsterdam, Vol. 40, p.433, 1989.
    37. D’Innocenzo, A., and Renna, L., “Dripping faucet.”Int. J. Theor. Phys., Vol. 35, No. 5, p. 941, 1996.
    38. D’Innocenzo, A., and Renna, L., “Analytical solution of the dripping faucet dynamics.” Physics Letters A, Vol. 220, p. 75, 1996.
    39. Clanet, C., and Lasheras, J. C., “Transition from dripping to jetting,” J. Fluid Mech, Vol. 383, pp. 307, 1999.
    40. Meister, B. J., and Scheele, G. F., “Prediction of jet length in immiscible liquid systems.” AIChE J., Vol. 15, p. 689, 1969.
    41. Basaran, O. A., “Small-scale free surface flows with breakup: Dropformation and emerging applications,” AIChE J., Vol. 48, p. 1842, 2002.
    42. Lord Rayleigh, “On the dynamic of revolving fluid,” Proc. R. Soc. London, Vol. 1, p. 148, 1916.
    43. Hocking, L. M., and Michael, D. H., “The stability of a column of rotating liquid.” Mathematika, Vol. 6, p. 25, 1959.
    44. Gillis, J., “Stability of a column of rotating viscous liquid.” Proc. Camb. Phil. Soc. 57, p. 152, 1961.
    45. Rutland, D. F. and Jameson, G. J., “Droplet production by the disintegration of rotating liquid jets.” Chem. Eng. Sci., Vol. 25, p. 1301, 1970.
    46. Eggers, J., and Brenner, M. P., “Spinning jets.” In Proceedings of the IUTAM Symposium on Nonlinear Waves in Multi-Phase Flow, p. 185, 2000.
    47. Zahniser, R., “Instabilities of rotating jets.” Bachelor Thesis, Massachusetts institute of technology, 2004.
    48. Kubitschek, J. P., and Weidman, P. D., “The effect of viscosity on the stability of a uniformly rotating liquid column in zero gravity.” J. Fluid Mech., Vol. 572, p. 261, 2007.
    49. Kubitschek, J. P., and Weidman, P. D., “Helical instability of a rotating viscous liquid jet.” Physics of Fluids, Vol. 19, 114108, 2007.
    50. Weidman, P. D, Kubitschek, J. P., and Medina, A. “Profiles of flow discharged from vertical rotating pipes: A contrastbetween inviscid liquid and granular jets.” Phys, Fluids, Vol. 20, 117101, 2008.

    無法下載圖示 校內:2022-01-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE