| 研究生: |
丁志帆 Ting, Chih-Fan |
|---|---|
| 論文名稱: |
螯合性高分子乳液之合成及其應用 Synthesis and application of polymer latex with chelating properties |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 奈米金屬微粒 、乳化聚合 |
| 外文關鍵詞: | nano metal particle, emulsion polymerization |
| 相關次數: | 點閱:68 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以GMA(Glycidyl methacrylate)和IDA(Iminodiacetic acid)合成出一具有螯合性官能基之單體 GMA-IDA,使之與苯乙烯(styrene)進行無乳化劑乳化聚合。再利用合成出之一系列乳液螯合銀離子,以UV還原方式得到奈米銀金屬微粒。探討單體配比、共溶劑對乳化聚合合成顆粒之粒徑、表面官能基之影響,及其對後來成長銀顆粒的影響。利用重量法、EA、IR測定合成乳液之組成,EA、官能基滴定瞭解顆粒型態,再使用TEM觀察成長之金屬顆粒。
由改變單體比可藉由離子型單體所提供的電荷穩定效果來改變粒徑、共溶劑的使用可以有效降低GMA-IDA homopolymer的產生,而不同共溶劑的使用量會因改變溶解度參數差異及電荷排斥力的關係使粒徑出現一最小值,實驗亦藉由影響聚合過程而得到不同表面官能基濃度的乳液,再利用計算得來的結果進而調控奈米銀金屬微粒的大小及分佈。由TEM觀察得知,可控制成長之奈米銀金屬微粒在5~30nm之間。
GMA-IDA with chelating function groups was synthesized by Glycidyl methacrylate(GMA) and Iminodiacetic acid(IDA). It can go soap-less emulsion polymerization with styrene and then got a serious of latexs. After the serious of latexs chelatingwith Ag+,we can get nano sliver metal particles by ultraviolet irradiation. The essay try to discuss the influence of different ratio of monomer and co-solvent on the diameter of latexs, particle surface function groups and the correlation of final Ag particle. The composition of latexs is tested by gravity method, EA and IR. The morphology of particle is analyzed by EA function group titration. Finally, we observe the growing metal particle by TEM.
Due to change the ratio of monomer, the ionic monomer can provide more electrostatic repulsion to change the diameter. The use of co-solvent can decrease GMA-IDA homopolymer. Moreover, the amount of different co-solvent will cause to min diameter for various solubility-parameter different and charge repulsive. The experiment got latexs with different concentration of surface function groups and dominate the size and distribution of nano Ag particle according to the calculated result. Finally, we can control the growth of nano Ag particle between 5~30nm by the observation of TEM.
1. S. A. Chen, S. T. Lee J. Chin, Colloid & Interface Soc., 18, 67-78(1995)
2. K.O. Calvert,”Polymer Latice and Their Applications”, Chap. 3,
Collier Macmillan,Canada, 1982.
3. S. A. Chen, S. T. Lee, Macromolecules, 24, 3340(1991)
4. S. A. Chen, S. T. Lee, Macromolecules, 25, 1530(1992)
5. S. A. Chen, S. T. Lee, Polymer, 33(7), 1437(1992)
6. S. A. Chen, S. T. Lee, Makromol. Chem. Rapid Commum., 30, 461(1993)
7. S. A. Chen, S. T. Lee, S. J. Lee, Polymer International, 30, 461(1993)
8. S. A. Chen, S. T. Lee, S. J. Lee, Makromol. Chem. Macromol. Symp., 35/36,
349(1990)
9. W. Y. Chiu, C. C. Shih, J. Appl. Polym. Sci., 31, 2117(1986)
10. I. M. Kolthoff, I. K. Miller, J. Am. Chem. Soc., 73, 3055(1951)
11. V. I. Yeliseyeva, “Emulsion Polymerization (Ed. Piirma, I.)”, Chap. 7,
Academic Press, 1982
12. S. A. Chen, H. S. Chang, J. Polym. Sci. Polym. Chem. Ed., 23,
2615(1985)
13. H. S. Chang, S. A. Chen, J. Polym. Sci. Polym. Chem. Ed., 26,
1207(1988)
14. M. S. Juang, I. M. Krieger, J. Polym. Sci. Polym. Chem. Ed., 14,
2089(1976)
15. L. J. Liu, I. M. Krieger, J. Polym. Sci. Polym. Chem. Ed., 19,
3013(1981)
16. S. A. Chen, H. S. Chang, J. Polym. Sci. Polym. Chem. Ed., 28,
2547(1990)
17. Y. Ohtsuka, H. Kawaguchi, Y. Sugi, J. Appl. Polym. Sci., 26,
1637(1981)
18. G. W. Ceska, J. Appl. Polym. Sci., 18, 427(1974); ibid., 2493.
19. Data from Catalog of B. P. Chemical Co.
20. 許振霖, 中華民國介面科學年會資料, 1995
21. J. W. Goodwin, J. Hearn, C. C. Ho, R. H. Ottewill, Br. Polym. J., 5,
347(1973)
22. S. M. Hasan, J. Polym. Sci. Polym. Chem. Ed., 20, 3031(1982)
23. M. Chainey, J. Hearn, M. C. Wilkinson, Br. Polym. J., 13, 132(1981)
24. M. Chainey, M. C. Wilkinson, J. Hearn, Ind. Eng. Chem. Prod. Res.
Dev., 21, 171(1982)
25. J. J. Krackeler, H. Naidus, J. Polym. Sci., C27, 207(1969)
26. J. L. Gardon, “Polymerization Process. (Ed. Schildknecht & Skeist)”,
143, John-Wiley, 1977.
27. A. R. Goodall, M. C. Wilkinson, J. Hearn, J. Polym. Sci. Polym.
Chem. Ed., 15, 2193(1977)
28. P. J. Feeney, D. H. Napper, R. G. Gilbert, Macromolecules, 20,
2922(1987)
29.吳國卿,董玉蘭;”奈米粒子的基本性質”;化工資訊,42,1999
30. Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C., The Shape
Transition of Gold Nanorods, Langmuir 1999, 15, 701.
31. Han, S. W.; Kim, Y.; Kim, K., Dodecanethiol-Derivatized Au/Ag Bimetallic
Nanoparticles - TEM, UV/VIS, XPS, and FTIR Analysis, J. Colloid and Interface
Sci. 1998, 208, 272.
32. Link, S.; Wang, Z. L.; El-Sayed, M. A., Alloy Formation of Gold-Silver
Nanoparticles and the Dependence of the Plasmon Absorption on Their
Composition, J. Phys. Chem. B 1999, 103, 3529.
33. Mulvaney, P.; Giersig, M.; Henglein, A., Surface-Chemistry of Colloidal Gold
- Deposition of Lead and Accompanying Optical Effects, J. Phys. Chem. 1992,
96, 10419.
34. A. Warshawsky,D. A. Upson,Journal of Polymer Science:Part A: Polymer
Chemistry,1989,Vol.27,pp2963-2994
35. A. Warshawsky,D. A. Upson,Journal of Polymer Science:Part A: Polymer
Chemistry,1989,Vol.27,pp3015-3041
36. H. Tamai,S. Hamamoto,F. Nishiyama,H. Yasuda,J. Of Coll. & Inter. Sci.,
1995,Vol171,pp250-253
37. Wang-YM ,Wang-YX ,Feng-LX ,J. of Appl. Polym. Sci., 1997, Vol.64,pp
1843-1848
38. Wang-PH, Pan CY, Colloid Polym Sci, 2000, Vol.278, pp245
39. Wang-PH, Pan CY, Colloid Polym Sci, 2000, Vol.278, pp581
40. Wang-PH, Pan CY, Journal of Polymer Science, 2000, Vol.75, pp1693
41. A.B.R. Mayer,W. Grebner, and R. Wannemacher, J. Phys. Chem B
2000,104,7278-7285
42. G. V. Myasoedova, I. I. Antokol’Skaya, S. B. Savvin, Talanta, 32(12),
1105-1112(1985)
43. Chonde Y, Krieger IM. J Appl Polym Sci 1981;26:1819
44. Almog Y, Reich S, Levy M. Br Polym J. December 1982:131
45. Kawaguchi H, Fujimoto K, Saito M, Kawasaki T, Urakami Y. Polym Int
1993;30:225
46. Bogush GH, Zukoski CF. J Colloid&Interface Sci 1991;142:19
47. M. Fineman and S. D. Ross, J. Polym. Sci, 1950;5,259
48. Kelen, T and Tudos, F. J. Macromol. Sci. Chem. (A) 1975,9(1),1