| 研究生: |
陳景翔 Chen, Ching-Hsiang |
|---|---|
| 論文名稱: |
光學眼鏡製造產能規劃系統之探討 A Study on Optical Glasses Manufacturing Capacity Requirements Planning System |
| 指導教授: |
楊大和
Yang, Ta-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 粗略產能規劃 、產能需求規劃 、在製品 、生產線平衡 、客製化系統 |
| 外文關鍵詞: | Rough capacity planning, Capacity Requirements Planning, Work-in-Process, production line balancing, customized system |
| 相關次數: | 點閱:82 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的不斷進步,企業經營環境已經發生了巨大的變化,越來越多的企業開始進行數位轉型,將生產管理的過程數位化,以提高生產效率和品質,降低生產成本。在現今的商業環境中,企業必須能夠不斷地適應和變革,以應對市場的快速變化和客戶不斷變化的需求。然而,許多企業認為只要導入了套裝軟體,就能夠解決所有的問題,實現企業的數位轉型。但實際上,套裝軟體可能無法完全滿足企業的需求,需要進一步的自定義和開發,才能真正實現企業的目標。而本研究就是因為案例公司既有的產能規劃套裝軟體APS(Advanced Planning and Scheduling)無法符合實務的需求,所以才衍生出本研究所開發的一套客製化且彈性的產能規劃及負荷評估系統,即CRP(Capacity Requirements Planning)系統。然而本研究也是此專案的第二期,與前一期最主要的差異點是由前向排程(Forward Scheduling)改為後向排程(Backward Scheduling),其目的在於解決第一期排程結果無法符合實務需求的問題,另外在系統架構上本研究也重新撰寫使其運算速度更快以此滿足使用者的需求。
本研究以一家光學眼鏡製造公司作為案例研究對象,內容包含兩大部分。第一部分是在現有的資訊架構和數據基礎上,建立CRP系統。與傳統的產能規劃相比,本研究強調考慮在製品的情況,因為它有一定分量的比例,無法忽略且已大大影響整體產能的估算。第二部分是以本研究中開發的CRP系統平台為基礎延伸發展出不同排單模組之系統組合,以實驗不同排單模型因子對線平衡績效指標的影響,最後還搭配了一種結合(交期+批量)之調整法以更進一步提升績效指標之分數。而經實驗結果可得出的結論是:如果公司排程是以顧客交期為重中之重的話,可採用(後向)-(固定)-(新單+現場單)之系統再配合使用(交期+批量調整法)做修正。
在導入系統後CRP系統平台為案例公司帶來的改變主要有兩方面:第一是排程精確度的提升,像是原本只能以特定型別數量為排單依據到後來把工時、前置期與產能變化都納入考量,更甚至是多了集結站假設、排單邏輯的改變等客製化之修正。第二則是效率上的提升,像是產銷協調時間從原先平均耗時4小時縮短至1.5小時,減少了約6成的時間,以上這些對案例公司而言可謂是很有感的提升改善。
With the continuous advancement of technology, the business environment has undergone significant changes. More and more companies are starting to undergo digital transformation by digitizing the production management process in order to improve production efficiency and quality and reduce production costs. However, many companies believe that simply implementing off-the-shelf software can solve all problems and achieve digital transformation. Off-the-shelf software may not fully meet the needs of the company and further customization and development may be required to truly achieve the company's goals.
This study was developed because the existing production capacity planning off-the-shelf software APS (Advanced Planning and Scheduling) used by the case company could not meet practical needs. Therefore, a customized and flexible capacity planning and load evaluation system, the CRP (Capacity Requirements Planning) system, was developed in this study. However, this study is the second phase of the project, with the main difference being the change from forward scheduling to backward scheduling, with the aim of solving the problem that the scheduling results of the first phase did not meet practical needs. Additionally, the system architecture of this study was re-written to improve the calculation speed and meet user needs.
This study focuses on a manufacturing company that produces optical glasses and contains two main parts. The first part is to establish a CRP system based on the existing information architecture and data foundation. Compared with traditional capacity planning, this study emphasizes considering the situation of products because it has a certain proportion that cannot be ignored and has greatly affected the overall estimate of production capacity. The second part is to extend the developed CRP system platform in this study to develop different order scheduling modules and experiment with the impact of different scheduling model factors on the line balancing performance index. Finally, a combined (the delivery-based adjustment method+ batch size adjustment method) is used to further improve the performance index score.
經濟部統計處,2023,工業產銷存動態調查,available at https://dmz26.moea.gov.tw/GMWeb/investigate/InvestigateDB.aspx(取得日期:2023.04.25)。
李彥翰(2022),《產能規劃系統建構之研究—以光學眼鏡製造為例》,國立成功大學製造所碩士論文,台南。
張韶詠、黃仲正(2009),迴流性多產品流程型生產系統的批量分割問題,運籌管理研討會,高雄海洋科技大學,台灣,高雄市。
松林光男、渡部弘(2019),《工廠構造與管理》,世茂,新北市。
Ancona, M., Beyeler, M., Gross, M., & Günther, T. (2019). MineTime Insight: Visualizing Meeting Habits to Promote Informed Scheduling Decisions. IEEE Transactions on Visualization and Computer Graphics, 27(3), 1986-1999.
Browne, J., Harhen, J., & Shivnan, J. (1996) Production Management Systems: An Integrated Perspective (2nd Edition), Massachusetts, United States.
Bevilacqua, M., Ciarapica, F. E., & Paciarotti, C. (2015), “Implementing lean information management: the case study of an automotive company,” Production Planning & Control, 26(10), 753-768.
Bartoszewicz, G., & Wdowicz, M. (2019), “Automation of the process of reporting the compliance of the production plan with its execution based on integration of SAP ERP system in connection with Excel spreadsheet and VBA application,” Digitalization of Supply Chains, 101-116, Spatium, Radom.
Chen, P. P. S. (1976), “The entity-relationship model—toward a unified view of data,” ACM Transactions on Database Systems (TODS), 1(1), 9-36.
Chaudhry, A. K., Kalwar, M. A., Khan, M. A., & Shaikh, S. A. (2021). Improving the efficiency of small management information system by using VBA. International Journal of Science and Engineering Investigations, 10(111), 7-13.
Daniel, V., Guide Jr, R., & Spencer, M. S. (1997), “Rough-cut capacity planning for remanufacturing firms,” Production Planning & Control, 8(3), 237-244.
Guide Jr, V. D. R., Srivastava, R., & Spencer, M. S. (1997), “An evaluation of capacity planning techniques in a remanufacturing environment,” International Journal of Production Research, 35(1), 67-82.
Gaury, E. G. A., Pierreval, H., and Kleijnen, J. P. C., (2000), “An evolutionary approach to select a pull system among Kanban, Conwip and Hybrid,” Journal of Intelligent Manufacturing, 11, 157-167.
Gademann, N., & Schutten, M. (2005), “Linear-programming-based heuristics for project capacity planning,” Iie Transactions, 37(2), 153-165.
Hopp, W. J. and Spearman, M. L., (1995), Factory Physics, 1stedition, McGraw-Hill, Boston.
Hopp, W. J. and Spearman, M. L., (1996), Factory Physics: Foundations of Manufacturing Management, IRWIN.
Hopp, W. J. and Roof, M. L., (1988), “Setting WIP levels with Statistical Throughput Control (STC) in CONWIP production lines,” International Journal of Production Research, 36(4), 867-882.
Higgins, A., & Davies, I. (2005), “A simulation model for capacity planning in sugarcane transport,” Computers and Electronics in Agriculture, 47(2), 85-102.
Hagedorn-Hansen, D., Hagedorn-Hansen, E., & Oosthuizen, G. A. (2016), “Resource efficient process chain strategies for global competitive manufacturers,” International Association for Management of Technology, 1-11.
Jo, J., Huh, J., Park, J., Kim, B., & Seo, J. (2014). LiveGantt: Interactively visualizing a large manufacturing schedule. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2329-2338.
Jodlbauer, H., & Reitner, S. (2012), “Material and capacity requirements planning with dynamic lead times,” International Journal of Production Research, 50(16), 4477-4492.
Jo, J., Huh, J., Park, J., Kim, B., & Seo, J. (2014), “LiveGantt: Interactively visualizing a large manufacturing schedule,” IEEE Transactions on Visualization and Computer Graphics, 20(12), 2329-2338.
Kanet, Roger E., Daniel R. Kempton. (1988), “Soviet Policy in Sub-Saharan Africa: Prospects and Problemsfor Model and Ally Stra tegies,” In The Gorbachev Generation, edited by Jane Shapiro Zacek, New York: Paragon.
Monden, Y., (1983), Toyota Production System: Practical Approach to Management, Industrial Engineering and Management Press, Norcross, GA.
Morita, D., & Suwa, H. (2015), “An exact method for robust capacity requirements planning,” International Journal of Automation Technology, 9(3), 216-221.
Pérez-Romero, J., Sallent, O., Ferrús, R., & Agustí, R. (2015), “Artificial intelligence-based 5G network capacity planning and operation,” In 2015 International Symposium on Wireless Communication Systems (ISWCS), 246-250. IEEE
Permana, S., Andriani, M., & Dewiyana, D. (2021), “Production Capacity Requirements Planning Using The Capacity Method Requirement Planning,” International Journal of Engineering, Science and Information Technology, 1(4), 36-40.
Spearman, M.L., Woodruff, D.L., and Hopp, W.J., (1990), “CONWIP: a pull alternative to kanban,” International Journal of Production Research, 28, 879-894.
Spearman, M.L., and Zazanis, M.A., (1992), “Push and pull production systems: issues and comparisons,” Operations Research, 40, 521-532.
Seethamraju, R., & Sundar, D. K. (2013), “Influence of ERP systems on business process agility,” IIMB Management Review, 25, 137-149.
Senkuviene, I., Jankauskas, K., & Kvietkauskas, H. (2014), “Using manufacturing measurement visualization to improve performance,” Mechanical Technologies, 20, 99-107.
Stevenson, W. J. (2015), Operations management, New York: McGraw-Hill Education.
Steenkamp, L. P., Hagedorn-Hansen, D., & Oosthuizen, G. A. (2017), “Visual management system to manage manufacturing resources,” Procedia Manufacturing, 8, 455-462.
Schuh, G., Anderl, R., Dumitrescu, R., Krüger, A.and Hompel, M. (2020), Industrie 4.0 Maturity Index Managing the Digital Transformation of Companies, acatech STUDIE, München, Germany.
Teixeira, L., Ferreira, C., & Santos, B. S. (2018), “An information management framework to industry 4.0: a lean thinking approach,” In International Conference on Human Systems Engineering and Design: Future Trends and Applications, 1063-1069. Springer, Cham.
Vollmann, T. E., Berry, W. L., & Whybark, D. C. (1992), Manufacturing Planning and Control Systems, Homewood: Richard D. Irwin.
V. Daniel, R. Guide Jr & M. S. Spencer (2010). “Rough-cut capacity planning for remanufacturing firms,” Production Planning & Control: The Management of Operations, 8(3), 237-244.
Wortman, J. C., Euwe, M. J., Taal, M., & Wiers, V. C. S. (1996), “A review of capacity planning techniques within standard software packages,” Production Planning & Control, 7(2), 117-128.
Willis, T. H., & Willis‐Brown, A. H. (2002), “Extending the value of ERP,” Industrial Management & Data Systems, 102(1), 35-38.
Wan, H. D., & Chen, F. F. (2008), “A Web-based Kanban system for job dispatching, tracking, and performance monitoring,” The International Journal of Advanced Manufacturing Technology, 38(9), 995-1005.