| 研究生: |
廖振頡 Liau, Jen-Jie |
|---|---|
| 論文名稱: |
使用非緩解數據之控制設計:不同設計方法的比較 Controller synthesis based on non-relaxed data: A comparison for different designs. |
| 指導教授: |
陳正宗
Chan, Jenq-Tzong Hermann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 數值化控制設計 、非緩解數據 |
| 外文關鍵詞: | DBCS, non-relaxed data |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在DBCS的理論說明裡面,曾經提到用來進行DBCS設計的實驗數據必須不包含任何零輸入響應(zero input response),換句話說,就是我們作的系統實驗都必須從靜止的初始狀態開始。然而,在很多情況下,不一定都能夠從靜止的狀態開始作實驗。此時,我們所得到的實驗數據將會含有一個由於初始狀態所導致的零輸入響應。若要拿這組具有初始值響應的數據運用在DBCS方法中,則必須先設法把數據裡的零輸入響應洗掉。為了要洗掉數據裡的零輸入響應,過去我們曾發展了兩種不同的方法,記錄在以前同學的論文裡,最近又有另一種洗掉零輸入響應的方法被發展出來,並記錄在附加的論文中。我們有興趣去透過一些實例的計算,來比較這個新方法跟過去那兩個方法的優劣。
When using Data-Based Controller Synthesis (DBCS) theory to design the system controller, it requires the open-loop test data does not contain any zero input response. In general, the zero input response is due to non-relaxed initial conditions. As a result, data used in a data-based control system must be obtained from a relaxed system. However, the system may not at rest in many situations when we start to take the experimental data. In these cases, we have to remove the initial state response from the sampled data before it can be applied for the DBCS. In order to remove the zero input response, two different techniques had been developed and documented in previous papers. In this thesis, we will introduce another method that we have developed recently. We will also compare the current method with the other two methods through numerical experimentations.
[1] Chan, J.T. Control System Synthesis Based on Plant Test Data, ASME/JDSMC, vol177, NO.4, pp.484-489, 1995.
[2] Chan, C.T. Linear System Theory and Design, Holt, Rinehart, and Winston, New York, N.Y., 1970.
[3] Callier, F. and Desoer, C. Linear System Theory, Springer-Verlag, New York, N.Y., 1911.
[4] Chan, J.T. and Wei, L.F. Adaptive multi-channel signal tracking controller for minimum or non minimum phase system, International Journal of Control, 50, NO.1, pp.65-73, 1989.
[5] Zames, G. On The Input-Output Stability of Time-Varying Nonlinear Feedback System – Part I: Conditions Derived Using Concepts of Loop Gains, Conicity and Positivity, IEEE Transaction on Automatic Control, AC-11, pp.465-478, 1966.
[6] Chan, J.T. Optimal Output Feedback Regulator-A Numerical Synthesis Approach for Input-Output Data, ASME/JDSMC, vol118, NO.2, pp.360-366, 1995.
[7] Chan, J.T. MIMO control system with non-dynamic inverse: A numerical design approach with sampled data, Int. J. of Control and Computers, vol.21, No.3, pp.97-101, 1993.
[8] Chan, J.T. Experimental data based control system synthesis - A discrete domain formulation for minimum phase systems, Int. J. of Control and Computers, 21, No.1, pp.28-32, 1993.
[9] Chan, J.T. Model-matching controller design with input-output data - A numerical approach for redundantly actuated systems, ASME/JDSMC vol.116, pp.800-805, 1994.
[10] Chan, J.T. Data-based control system synthesis, A discrete domain formulation for redundantly actuated systems, Int. J. of Control and Computers, vol.21, No.1, pp.22-27, 1996.
[11] Chan, J.T. Data-based synthesis of Multivariable LQ Regulator, Automatica vol.32, No.3, pp.403-407, 1996.
[12] Franklin, G.F. and Powell, J.D. Digital Control of Dynamic Systems, Addison-Wesley, Reading, Massachusetts, 1980.