簡易檢索 / 詳目顯示

研究生: 黃敬睿
Huang, Ching-Jui
論文名稱: 鋁合金板件電磁成形可成形性試驗之耦合模擬
Coupled Modeling of Formability Test for Electromagnetic Forming of Aluminum Sheet
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 67
中文關鍵詞: 電磁成形製程可成形性試驗耦合模擬成形極限圖鋁合金板件
外文關鍵詞: Electromagnetic Forming, Formability Test, Coupled Modeling, FLD, Aluminum sheet
相關次數: 點閱:115下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋁合金材料質輕、美觀、高強度等特色,早期於航太、汽機車產業,現今生活中各式3C產品,都大量使用做為輕量化結構、金屬外殼等用途。選擇以高能率之電磁成形製程加工鋁合金板件,可提高可成形性,也可避免傳統加工常面臨之回彈問題。
    本研究針對電磁成形製程,以鋁合金6061-T6板材進行實驗。利用有限元素軟體LS-DYNA,根據所設計之衝頭與試片幾何,評估其應變路徑,以規畫出可產生第二象限分散且線性應變路徑之可成形性試驗衝頭與試片幾何。
    接著以實驗建立了材料在高速下第二象限分散應變路徑之成形極限,同時也使用電磁耦合模擬軟體LS-DYNA980模擬此可成形性試驗,透過比對實驗與模擬之試片外形、應變路徑趨勢,證實耦合模擬可準確預估電磁成形可成形性試驗。

    Aluminum alloy has the characteristics of high strength and lightweight, which is widely applied to aeronautical, automobile industries and 3C (computer, consumer electronics and communication) industries. Forming aluminum sheet by Electromagnetic Forming Process (EMFP) has the advantages to increase formability and avoid the spring-back problem.
    In this research, the formability test for electromagnetic forming process was established. The Forming Limit Diagram at high strain rate up to 9000 s-1 for different strain path in the second quadrant were generated by changing the shape of an aluminum alloy Al6061-T6 sheet and ring punch geometry.
    Using the Electromagnetic coupled finite element software LS-DYNA 980 to the formability test is simulated and compared with the experimental results. The proposed experimental design has been confirmed to be able to obtain the forming limit of sheet at different strain path in the second quadrant. The coupled simulation could predict the formability test for electromagnetic forming is good agreement with the experimental rasults.

    中文摘要 I 英文摘要 II 誌謝 III 總目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 X 第一章 緒論 1 1-1 前言 1 1.2 文獻回顧 2 1.2.1 金屬成形概論 2 1.2.2 電磁成形製程發展 4 1.2.3 電磁成形製程有限元素模擬理論系統 6 1.2.4成形極限研究 9 1.2.5高速率成形極限研究 10 1.3 本文研究範疇 12 第二章 理論方法 14 2.1 電磁成形製程依工作區分類 14 2.2材料本構模型 16 2.3應變轉換公式 18 2.4試片飛行速度量測方法 21 2.5成形之應變率定義 22 2.6耦合模擬之電流資料計算 23 第三章 實驗方法 24 3.1機台儀器說明 24 3.2實驗設計 26 3.2.1模擬之建立 26 3.2.2建立工作電壓與飛行速度之關係 33 3.2.3建立工作電壓與電流脈衝資料關係 35 3.3衝頭試片幾何參數設計 36 3.4電磁成形實驗 41 第四章 結果與討論 42 4.1應變量測 42 4.2五種試片之實驗結果 44 4.3五種試片模擬結果 48 4.3.1試片變形過程 48 4.3.2耦合模擬之應變路徑 50 4.4實驗結果與耦合模擬結果比對 53 4.4.1模擬與實驗之外形比較 53 4.4.2應變值及應變路徑之比對 56 4.5純速度模擬與耦合模擬方式之比較 61 第五章 結論與建議 62 5.1 結論 62 5.2 建議 63 參考文獻 64

    ASM Handbook Committee, Metal Handbook 9th, Electromagnetic Forming. American Society for Metals, 1988.

    Bendjima, B., "A Coupling Model for Analyzing Dynamical Behaviours of An Electromagnetic Forming System", IEEE Transactions on Magnetics, 33(2), pp. 1638-1641, 1997.

    Cockcroft, M. G., D. J. Latham, "Ductility and Workability of Metals", J. Inst. Metals, 96, pp. 33, 1968.

    Goodwin, G. M., "Application of Strain Analysis on Sheet Metal Forming Problems in The Press Shop", SAE Paper No. 680039, 1968.

    Harvey, G. W., D. F., Brower, "Metal Forming Device and Method", US-Patent Nr. 2976907, 1958.

    Hasek, V., "Untersuchung and Theoretische Beschreibung Wichtiger Einflubgron auf das Grenzformanderungsschaubild", Institute of Metal Forming Report, University of Stuttgart, West Germany, pp. 213-220, 1978.

    Hibbeler, R. C., "Mechanics of Materials sixth edition", Pearson education, pp. 497-502, 2005.

    Johnson, G. R., W. H. Cook, "A Constitutive Model and Data for Metals Subjected to Large Strains High Strain Rates and High Temperatures", Proceedings of the 7th international symposium on ballistics, pp. 541-547, 1983.

    Kapitza, P. L., "A Method of Producing Strong Magnetic Fields", Proceedings of the Royal Society of London. Series A, 105(734), pp. 691-710, 1924.

    Keeler, S. P., W. A. Backofen, "Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches", Trans. ASM, 56, pp. 25, 1963.

    L'Eplattenier, P., G. Cook, C. Ashcraft, M. Burger, J. Imbert and M. Worswick, "Introduction of an Electromagnetism Module in LS-DYNA for Coupled Mechanical-Thermal-Electromagnetic Simulations", Steel Research International, 80(5), pp. 351-358, 2009.

    Lesuer, D. R., G. J. Kay and M. M. LeBlanc, Modeling Large-Strain, High-Rate Deformation in Metals, 2001.

    Ludwik, P., "Elemente der Technologischen Mechanik" Springer Verlag, Berlin, pp. 32, 1909.

    Mamalis, A. G., D. E. Manolakos, A. G. Kladas and A. K. Koumoutsos, "Electromagnetic forming and powder processing:Trends and developments", American Socirty of Mechanical Engineers, 57, 2004.

    Mamalis, A. G., D. E. Manolakos, A. G. Kladas and A. K. Koumoutsos, "Electromagnetic forming tools and processing conditions: Numerical simulation", Materials and Manufacturing Processes, 21(4), pp. 411-423, 2006.

    Marciniak, E., K. Kuczynski, "Limit Strains in the Processes of Stretch Sheet Metal", Int. J. Mech. Sci., 9, pp. 609, 1967.

    Maxwell, J. C., A Treatise of Electricity and Magnetism. Oxford University Press, London, pp. 47-49, 1873.

    Nakazima, K., "study on formability of steel sheets" Yawata Technical Report, No. 264, pp. 141-154, 1963.

    Oliveira, D. A., M. J. Worswick, M. Finn and D. Newman, "Electromagnetic forming of aluminum alloy sheet: Free-form and cavity fill experiments and model", Journal of Materials Processing Technology, 170(1-2), pp. 350-362, 2005.

    PULSAR, "MP Iintroduction- MIRDC training", 2008.

    Seth, M., V. J. Vohnout and G. S. Daehn, "Formability of steel sheet in high velocity impact", Journal of Materials Processing Technology, 168(3), pp. 390-400, 2005.

    Smerd, R., S. Winkler, C. Salisbury, M. Worswick, D. Lloyd and M. Finn, "High strain rate tensile testing of automotive aluminum alloy sheet", International Journal of Impact Engineering, 32(1-4), pp. 541-560, 2005.

    Sung Ho Lee, D. N. L., "A Finite Element Analysis of Electromagnetic Forming for Tube Expansion", Journal of Engineering Materials and Technology, 16, pp. 250-254, 1994.

    Swift, H. W., "Plastic Instability under Plane Stress", J. Mech. Phys. Solid, 1, pp. 1-18, 1952.

    Thomas, J. D., M. Seth, G. S. Daehn, J. R. Bradley and N. Triantafyllldis, "Forming limits for electromagnetically expanded aluminum alloy tubes: Theory and experiment", Acta Materialia, 55(8), pp. 2863-2873, 2007.

    Vohnout, V. J., "A hybrid Quasi-static/dynamic process for forming large metal parts from aluminum", Ohio State University, USA, 1998.

    Zerilli, F. J., R. W. Armstrong, "Dislocation–mechanics–based constitutive relations for material dynamics calculations", J. Appl. Phys. 61, pp. 1816-1825, 1987.
    朱祐誼, 板材折邊電磁成形之有限元素耦合模擬, 碩士論文, 國立成功大學機械工程學系, 2007.

    李春峰、于海平, "電磁成形技術理論研究進展", Journal of Plasticity Engineering, 12(5), 2005.

    李榮顯, 塑性加工學, 三民書局, pp. 445-446, 1986.

    林宏仁、陳煌源、蘇貴福, 衝壓成形難易指南, 全華, 1991.

    林群福, 應用有限元素法於板金成形極限能量準則之建立及應變路徑之模擬, 碩士論文, 國立成功大學機械工程學系, 1991.

    莊偉倫, 應用有限元素法於板金成形極限之模擬分析, 碩士論文, 國立成功大學機械工程學系, 1980.

    羅方韋, 鋁合金板件於電磁成形時之高應變率成形極限預測, 碩士論文, 國立成功大學機械工程學系, 2010.

    下載圖示 校內:2014-08-09公開
    校外:2014-08-09公開
    QR CODE