簡易檢索 / 詳目顯示

研究生: 蔡敬
Tsai, Jing
論文名稱: 鍺鰭式電晶體退化原因與照射紫外光變化之系統性探討
Systematically Investigating the Degradation Mechanisms of Germanium FinFET and Consequences of the Ultraviolet Light Irradiation
指導教授: 莊文魁
Chuang, Wen-Kuei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 75
中文關鍵詞: 鰭式電晶體紫外光界面缺陷遲滯現象TCAD
外文關鍵詞: Germanium, FinFET, ultraviolet light, interface trap, hysteresis effect, TCAD
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著摩爾定律快要走到盡頭,新的半導體製程與材料必須被開發與研究,鍺是非常有可能作為取代矽的材料,雖然成本較高,但其遷移率也較高,與矽的 CMOS製程也具兼容性,故鍺非常有希望作為未來技術節點的候選材料。
    然而製作成元件後,遷移率會大大的下降,因為氧化層與半導體層之間的界面會因為懸浮鍵所形成的界面缺陷限制其良好的特性,故在這層界面的處裡上過去也過了廣泛的研究。
    本實驗針對鍺鰭式電晶體先進行電性上的量測,發現當電壓正反掃時會有遲滯現象,再對元件照射紫外光一樣進行正反掃,遲滯現象會增加,因為照射紫外光的緣故會激發材料的電子電洞對,但激發出的載子並沒有流向汲極處,而是被界面處的陷阱困住或是氧化物內部的電荷包括製程上產生的與Band offset太低造成的載子穿隧,均會引發遲滯現象。
    使用TCAD模擬軟體進行驗證,首先會先針對不同的尺寸模擬出理想狀況的電晶體特性,並且萃取電性參數作為指標,結果顯示出越小尺寸的元件在Ioff、DIBL與SS等負面參數上均較高,在物理上均非常符合,故可以先確認模擬的材料與結構具有優良的電晶體特性。再加入影響電晶體曲線的因素,包括漏電機制、溫度影響、Dit分佈與遷移率下降等因素進行調整,使模擬的曲線更接近量測結果。其中在Dit分佈上會先模擬在能隙上均勻分佈的狀況,藉此找尋適當的Dit分佈與濃度大小。另外當把midgap 或 donor-state 的Dit濃度增加會與量測元件照射紫外光曲線有相同的趨勢,因此驗證了當元件照射紫外光後在midgap 或 donor-state的Dit濃度增加。

    As Moore's Law is coming to an end, new semiconductor processes and materials must be developed and researched. Germanium is very likely to be used as a material to replace silicon due to its higher mobility, though it comes with an expense of a comparatively higher cost. It is also compatible with the silicon CMOS process, so germanium is very promising as a candidate material for future technology nodes.
    As the device is fabricated, the resultant mobility becomes greatly reduced due to a poor interface between the oxide layer and the semiconductor layer as a result of the dangling-bond-induced interfacial defects that limit the device performance. To mitigate these nagging issues, extensive research efforts have consistently been invested to formulate various avenues to curtail defect density.
    In this experiment, the electrical measurement of the germanium FinFET is carried out, and it is found that hysteresis occurs when the forward and reverse voltages are swept. As the device is irradiated with ultraviolet light while performing a voltage sweep in both forward and reverse directions, the hysteresis becomes increasingly apparent. The foregoing observation is primarily attributed to the charges inside the oxide and the interfacial trapped defects.
    TCAD simulation is also performed for verification. First, the ideal transistor characteristics are simulated to extract relevant electrical parameters when different device dimensions are taken into consideration. The results show that the relatively smaller devices do have higher negative parameters including Ioff, DIBL, and SS. The other factors that affect the transistor performance curves, including leakage mechanism, temperature influence, Dit distribution, and mobility reduction are also incorporated into the simulation model to closely match the simulated curves with the measurement results previously obtained. When the Dit concentration is increased in the midgap or donor-state, it has the same trend as that of the device irradiated with UV light.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究動機 3 1.3論文架構 7 第二章 鍺基鰭式電晶體 8 2.1 MOSFET簡介與原理 8 2.2 技術演進發展 11 2.3遷移率退化現象 13 2.3.1 汲極電壓VD所引起的遷移率下降 13 2.3.2 閘極電壓VG所引起的遷移率下降(界面陷阱能階) 14 2.3.3氧化層內的缺陷所引起的遷移率下降 15 2.3.4 寄生電阻 16 2.4界面陷阱能階的處裡 18 2.5遲滯現象 21 2.5.1 缺陷或鐵電材料所引起之遲滯現象 21 2.5.2 量測環境所引起之遲滯現象 22 第三章 元件製作流程與分析方法 24 3.1鍺鰭式電晶體製備 24 3.2電性參數萃取方法 27 3.2.1臨界電壓(Threshold Voltage,Vt) 28 3.2.2飽和電流(Ion)、關電流(Ioff)、電流開關比(on/off Ratio) 29 3.2.3次臨界擺幅(Subthreshold Swing, SS) 29 3.2.4汲極引發位能障下降(drain induced barrier lowering,DIBL) 30 3.3 TCAD相關物理模型 31 3.3.1 TCAD簡介及電荷傳輸分佈模型 31 3.3.2 TCAD建立元件結構及設定相關參數 32 3.3.3飄移擴散模型 34 3.3.4遷移率模型 35 3.3.5穿隧機制模型 37 3.3.6界面陷阱能階設置 39 3.3.7元件照光設置 39 第四章 模擬與量測結果分析 41 4.1量測結果分析 41 4.2理想電性模擬 54 4.3加入非理想特性之電性模擬 57 4.3.1漏電流相關機制模擬 57 4.3.2其他退化原因模擬 58 4.3.3元件照光模擬 63 4.3.4 界面陷阱能階之模擬 65 第五章 結論與未來工作 68 5.1結果與討論 68 5.2未來工作 70 參考文獻 72

    [1] S. E. Thompson and S. Parthasarathy, "Moore's law: the future of Si microelectronics," Materials today, vol. 9, no. 6, pp. 20-25, 2006.
    [2] D. Wang et al., "Surface chemistry and electrical properties of germanium nanowires," J. Am. Chem. Soc., vol. 126, no. 37, pp. 11602-11611, 2004.
    [3]A. Toriumi et al., "Material potential and scalability challenges of germanium CMOS," in 2011 International Electron Devices Meeting, 2011: IEEE, pp. 28.4. 1-28.4. 4.
    [4] M.-S. Yeh et al., "Ge FinFET CMOS inverters with improved channel surface roughness by using In-situ ALD digital O 3 treatment," IEEE Journal of the Electron Devices Society, vol. 6, pp. 1227-1232, 2018.
    [5]Greg Yeric,” Challenge of 7 nm CMOS Technologies: Circuit Application Requirements” ,International Electron Devices Meeting, 2014.
    [6] E. Tutuc, J. Appenzeller, M. C. Reuter, and S. Guha, "Realization of a linear germanium nanowire p− n junction," Nano letters, vol. 6, no. 9, pp. 2070-2074, 2006.
    [7]Y. Ahn and J. Park, "Efficient visible light detection using individual germanium nanowire field effect transistors," Applied Physics Letters, vol. 91, no. 16, p. 162102, 2007.
    [8] M. H. Rashid, Microelectronic circuits: analysis and design. Cengage learning, 2016.
    [9] Neamen, Donald A. Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill,2012.
    [10] J. Cho, F. Geelhaar, U. Rana, L. Vanamurthy, R. Sporer, and F. Benistant, "TCAD analysis of SiGe channel FinFET devices," in 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2017: IEEE, pp. 357-360.
    [11] 林育詩,"簡單的光學突破 3C 科技瓶頸: 浸潤式微影," Chinese Physics, vol.9,no.1,pp.1-16,2008.
    [12] M. Bohr and K. Mistry, "Intel’s revolutionary 22 nm transistor technology," Intel website, 2011.
    [13] B. Yang, K. Buddharaju, S. Teo, N. Singh, G. Lo, and D. Kwong, "Vertical silicon-nanowire formation and gate-all-around MOSFET," IEEE Electron Device Letters, vol. 29, no. 7, pp. 791-794, 2008.
    [14] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2021.
    [15] D. Kuzum et al., "High-mobility Ge N-MOSFETs and mobility degradation mechanisms," IEEE transactions on electron devices, vol. 58, no. 1, pp. 59-66, 2010.
    [16] C.-S. Huang and P.-T. Liu, "Effect of high-pressure H2O treatment on elimination of interfacial GeOX layer between ZrO2 and Ge stack," Applied Physics Letters, vol. 99, no. 8, p. 082907, 2011.
    [17]D. Misra, R. Garg, P. Srinivasan, N. Rahim, and N. Chowdhury, "Interface characterization of high-k dielectrics on Ge substrates," Materials science in semiconductor processing, vol. 9, no. 4-5, pp. 741-748, 2006.
    [18] S. Takagi, R. Zhang, and M. Takenaka, "Ge gate stacks based on Ge oxide interfacial layers and the impact on MOS device properties," Microelectronic engineering, vol. 109, pp. 389-395, 2013.
    [19] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, "Al 2 O 3/GeO x/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation," Applied Physics Letters, vol. 98, no. 11, p. 112902, 2011.
    [20]Zhang, Rui, et al. "High-Mobility Ge pMOSFET With 1-nm EOT Al2O3/GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation." IEEE Transactions on Electron Devices , vol. 59, no. 2, pp. 335-341, 2011.
    [21] R. W. Chuang, Y.-L. Lee, Y.-C. Huang, Y.-J. Lee, and C.-J. Su, "Investigating the applicability of ferroelectric hafnium-zirconium-oxide-based nanowire transistors in silicon photonics," in Silicon Photonics XVI, 2021, vol. 11691: International Society for Optics and Photonics, p. 1169114.
    [22] E. Yurchuk et al., "Charge-trapping phenomena in HfO 2-based FeFET-type nonvolatile memories," IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3501-3507, 2016.
    [23] Bing-Yue Tsui, Shiue, Sheng-Ming. "A study on the Hysteresis effect of CNTFET." Department of Electronics Engineering Institute of Electronics National Chiao Tung University (2005).
    [24] 黃昆平, 張志振, 胡竹生, 趙天生, and 李耀仁, "半導體微波退火設備開發," 機械工業雜誌, no. 423, pp. 22-30, 2018.
    [25] Y.-J. Lee et al., "Dopant activation in single-crystalline germanium by low-temperature microwave annealing," IEEE Electron Device Letters, vol. 32, no. 2, pp. 194-196, 2010.
    [26] P. Hofstetter, R. W. Maier, and M.-M. Bakran, "Influence of the threshold voltage hysteresis and the drain induced barrier lowering on the dynamic transfer characteristic of SiC power MOSFETs," in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), 2019: IEEE, pp. 944-950.
    [27] Sentaurus Structure Editor User Guide, Version L-2016.03, March 2016
    [28] Sentaurus Device User Guide Version L-2016.03, March 2016
    [29] Hiroshi Watanabe, Po-Jui Lin. "Development of Device Simulator for Future Nano Technology." National Chiao Tung University Institute of Electrical Control Engineering College of Electrical and Computer Engineering Master Thesis, 2012
    [30] S.-i. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration," IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357-2362, 1994.
    [31]蘇俊榮, " 3C電子產品不可缺的靈魂技術— 浮閘記憶體"科學發展,第541 期,pp.42-46,2018。
    [32] G. Hurkx, D. Klaassen, and M. Knuvers, "A new recombination model for device simulation including tunneling," IEEE Transactions on electron devices, vol. 39, no. 2, pp. 331-338, 1992.
    [33] F. Drăgan et al., "Optical Modeling and Simulation of Tandem Metal Oxide Solar Cells," Annals of the West University of Timisoara. Physics Series, vol. 60, pp. 56-66, 2018.
    [34]翁敏航,“太陽能電池原理、元件、材料、製程與檢測技術”台灣東華書局股份有限公司,2014。
    [35] G. Hellings et al., "A fast and accurate method to study the impact of interface traps on germanium MOS performance," IEEE Transactions on Electron Devices, vol. 58, no. 4, pp. 938-944, 2011.
    [36]M. J. Kang, I. Myeong, and K. Fobelets, "Geometrical influence on Self Heating in Nanowire and Nanosheet FETs using TCAD Simulations," in 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), 2020: IEEE, pp. 1-4.
    [37]Dutta, Barnana, et al. "Interface Trap Analysis of HIGH-K MOSCAP Using T-CAD."International Journal of Engineering Research & Technology (IJERT), 2017.
    [38] N. Goel and A. Tripathi, "Temperature effects on threshold voltage and mobility for partially depleted SOI MOSFET," International Journal of Computer Applications, vol. 42, no. 21, pp. 56-58, 2012.
    [39] A. Nemecek, G. Zach, R. Swoboda, K. Oberhauser, and H. Zimmermann, "Integrated BiCMOS pin photodetectors with high bandwidth and high responsivity," IEEE Journal of selected topics in Quantum Electronics, vol. 12, no. 6, pp. 1469-1475, 2006.
    [40] N. H. Ngo et al., "Toward the Super Temporal Resolution Image Sensor with a Germanium Photodiode for Visible Light," Sensors, vol. 20, no. 23, p. 6895, 2020.
    [41] P. Jain and B. Mishra, "Evaluation of Optically Illuminated MOSFET Characteristics by TCAD SIMULATION," International Journal of VLSI design & Communication Systems, vol. 4, no. 2, p. 11, 2013.
    [42] V. Kumari, M. Gupta, and M. Saxena, "TCAD-Based Investigation of Double Gate JunctionLess Transistor for UV Photodetector," IEEE Transactions on Electron Devices, vol. 68, no. 6, pp. 2841-2847, 2021.
    [43] R. Gautam, M. Saxena, R. Gupta, and M. Gupta, "Analytical model of double gate MOSFET for high sensitivity low power photosensor," JSTS: Journal of Semiconductor Technology and Science, vol. 13, no. 5, pp. 500-510, 2013.
    [44] H.-W. Zan et al., "Amorphous indium-gallium-zinc-oxide visible-light phototransistor with a polymeric light absorption layer," Applied Physics Letters, vol. 97, no. 20, p. 203506, 2010.
    [45] M. Kimura et al., "Mechanism analysis of photoleakage current in ZnO thin-film transistors using device simulation," Applied Physics Letters, vol. 97, no. 16, p. 163503, 2010.
    [46] S.-C. Hsu and Y. Li, "Electrical characteristic fluctuation of 16-nm-gate high-κ/metal gate bulk FinFET devices in the presence of random interface traps," Nanoscale research letters, vol. 9, no. 1, pp. 1-8, 2014.
    [47] P. S. Winokur, "Radiation-induced interface traps," in Ionizing radiation effects in MOS devices and circuits, 1989.
    [48] G. Hellings et al., "Electrical TCAD simulations of a germanium pMOSFET technology," IEEE Transactions on Electron Devices, vol. 57, no. 10, pp. 2539-2546, 2010.
    [49] D. Kuzum, J.-H. Park, T. Krishnamohan, H.-S. P. Wong, and K. C. Saraswat, "The effect of donor/acceptor nature of interface traps on Ge MOSFET characteristics," IEEE Transactions on electron devices, vol. 58, no. 4, pp. 1015-1022, 2011.
    [50] R. Engel-Herbert, Y. Hwang, and S. Stemmer, "Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces," Journal of applied physics, vol. 108, no. 12, p. 124101, 2010.

    無法下載圖示 校內:2026-09-01公開
    校外:2026-09-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE