簡易檢索 / 詳目顯示

研究生: 曾子清
Tseng, Zi-Qing
論文名稱: 開發一種利用抗體化磁珠以及表面增強拉曼散射進行牙齦卟啉單胞菌簡易且準確快速之定性及定量方法
Development of a Simple, Accurate, and Rapid Method for Qualitative and Quantitative Detection of Porphyromonas gingivalis Using Antibody-Conjugated Magnetic Beads and Surface-Enhanced Raman Scattering
指導教授: 吳炳慶
Wu, Ping-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 94
中文關鍵詞: 慢性牙周病牙齦卟啉單胞菌表面增強拉曼散射奈米金棒抗體化磁珠
外文關鍵詞: Chronic periodontitis, Porphyromonas gingivalis (P. gingivalis), Surface-Enhanced Raman Scattering (SERS), gold nanorods (GNRs), antibody-conjugated magnetic beads
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 牙齦卟啉單胞菌(Porphyromonas gingivalis, P. gingivalis)是慢性牙周炎的主要病原菌,其存在和數量與牙周病的嚴重程度密切相關。慢性牙周炎是一種常見的口腔疾病,會導致牙齦炎症、牙槽骨吸收和最終的牙齒脫落,並且與多種全身性疾病(如心血管疾病、糖尿病等)有密切關聯。傳統檢測方法如細菌培養和聚合酶鏈反應(PCR)由於處理時間長、操作複雜和成本高,難以滿足快速臨床診斷的需求。因此,開發一種快速且準確的檢測方法對於提高臨床診斷效率和患者治療效果具有重要意義。
    本研究開發了一種結合抗體化磁珠和表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS)技術的P. gingivalis檢測方法。SERS技術利用奈米金棒作為基底材料,通過其局域表面電漿共振(Localized Surface Plasmon Resonance, LSPR)效應來顯著增強拉曼信號。此外,奈米金棒通過表面電荷相互作用有效吸附細菌,進一步提高檢測靈敏度。同時,抗體化磁珠技術利用磁珠表面修飾上抗體,對P. gingivalis進行高效分離和聚集,提升檢測的特異性和準確性。
    在實驗過程中,首先合成了奈米金棒,並通過調控反應條件來優化其尺寸和形狀,以獲得最佳的LSPR效應。隨後將奈米金棒與細菌混和吸附,同時製備抗體化磁珠,並將其與含有奈米金棒的細菌再次混合,利用磁性分離技術實現目標細菌的聚集和分離,最終進行SERS檢測。結果顯示,該方法能夠在60分鐘內實現P. gingivalis的高靈敏度和高特異性檢測,並提供準確的定量結果,最低檢測值能達到10^4 CFU/mL。
    本研究結果顯示。透過抗體化磁珠與SERS技術的結合,我們成功開發出一種滿足臨床需求,簡便、準確且快速的細菌檢測方式。特別是針對P. gingivalis這種與多種全身性疾病相關的病原菌,本技術的應用將提升牙周病的診療效率,改善患者的口腔健康和生活品質,並為未來其他病原菌的快速檢測提供新的方法和思路。

    Porphyromonas gingivalis (P. gingivalis) is the primary pathogen of chronic periodontitis, with its presence and quantity closely related to the severity of periodontal disease. Chronic periodontitis is a common oral disease that leads to gingival inflammation, alveolar bone resorption, and ultimately tooth loss. It is also associated with various systemic diseases, such as cardiovascular diseases and diabetes. Traditional detection methods, such as bacterial culture and polymerase chain reaction (PCR), are limited by long processing times, complex operations, and high costs, making them unsuitable for rapid clinical diagnosis. Therefore, developing a rapid and accurate detection method is crucial for improving clinical diagnostic efficiency and patient treatment outcomes.
    This study developed a rapid and accurate detection method for P. gingivalis by combining antibody-conjugated magnetic beads (MBs) with Surface-Enhanced Raman Scattering (SERS) technology. SERS technology utilizes GNRs as the substrate material, leveraging their Localized Surface Plasmon Resonance (LSPR) effect to significantly enhance Raman signals. Additionally, the GNRs effectively adsorb bacteria through surface charge interactions, further improving detection sensitivity. The antibody-conjugated MBs technology efficiently separates and enriches P. gingivalis, enhancing detection specificity and accuracy.
    During the experimental process, GNRs were first synthesized and their size and shape were optimized by adjusting reaction conditions to achieve the best LSPR effect. The GNRs were then mixed with and adsorbed onto the bacteria. Antibody-conjugated MBs were prepared and mixed with the bacteria-containing GNRs, utilizing magnetic separation technology to achieve the aggregation and separation of the target bacteria, followed by SERS detection. The results show that this method can achieve high sensitivity and specificity in the detection of P. gingivalis within 60 minutes and provide accurate quantitative results, with a detection limit as low as 10^4 CFU/mL.
    The findings of this study demonstrate that by combining antibody-conjugated MBs with SERS technology, we have successfully developed a simple, accurate, and rapid bacterial detection method that meets clinical needs. Specifically, for P. gingivalis, a pathogen associated with various systemic diseases, the application of this technology will improve the diagnostic efficiency of periodontal disease, enhance patients’ oral health and quality of life, and provide new methods and approaches for the rapid detection of other pathogens in the future.

    摘要 I Abstract II 誌謝 IV Contents VI List of Table X List of Figures XI Abbreviation List XIII Chapter 1 Introduction 1 1.1 Chronic Periodontitis 2 1.1.1 Definition and Clinical Features of Chronic Periodontitis 2 1.1.2 Epidemiology of Chronic Periodontitis 3 1.1.3 Chronic Periodontitis 3 1.2 Periodontal Pathogen- P. gingivalis 4 1.2.1 Microbiological Characteristics of P. gingivalis. 4 1.2.2 Mechanism of Colonization of P. gingivalis in Periodontal Tissues 6 1.2.3 Mechanisms by which P. gingivalis Triggers and Exacerbates Periodontal Inflammation 6 1.2.4 The Pathological Relationship of P. gingivalis to Non-Periodontal Diseases 7 1.2.5 The Importance of Qualitative and Quantitative Analysis of P. gingivalis10 1.3 Surface-enhanced Raman Scattering (SERS) 12 1.3.1 History of Raman Scattering 12 1.3.2 Basic Principles of Raman Scattering 12 1.3.3 History of SERS 15 1.3.4 Basic Principles of SERS 17 1.3.5 The Application of Metals in SERS for Bacterial Analysis 18 1.3.6 Morphologies of Gold Nanoparticles 19 1.3.7 Synthesis of GNRs 20 1.4 Application of Antibody-Coated Magnetic Beads (MBs) in the Separation of P. gingivalis 21 1.5 Specific Aim 21 Chapter 2 Materials & Methods 23 2.1 Materials 24 2.2 Oral Pathogens Culture 25 2.2.1 Bacterial Strain Selection 25 2.2.2 P. gingivalis Culture 25 2.2.3 S. mitis Culture 25 2.2.4 Establishment of a Standard Curve for Bacterial Count 25 2.3 SERS Substrate Preparation 26 2.3.1 Preparation of GNRs 26 2.3.2 Characterization of Gold Nanoparticles and Bacteria 28 2.4.1 Antibody Modification on MBs 28 2.4.2 Detection of Antibody Residuals Using Bradford Protein Assay 29 2.4.3 Confirmation of Functional Groups on the Surface of antibody-conjugated MBs 30 2.4.4 Capturing Bacteria Using Antibody-Conjugated MBs was Performed 30 2.4.5 Analysis of Morphological Characteristics of Metals and Bacteria 30 2.5 Acquisition of Raman Spectra 31 2.5.1 Creation of Liquid SERS wells 31 2.5.2 Spectral Data Acquisition 32 2.5.3 Quantification of Bacteria 32 Chapter 3 Results 33 3.1 Correlation Between P. gingivalis OD Values and Plate Count 34 3.2 Characterization of Gold Nanoparticles and Bacteria 37 3.2.1 The Absorption Spectrum of Gold Nanoparticles 37 3.2.2 Surface Charge of GNRs and Bacteria 38 3.2.3 The TEM Images of Bacteria and GNRs 41 3.2.4 The SEM Images and of Bacteria and GNRs 43 3.3 Characterization of MBs after Antibody Modification 48 3.3.1 Modification Verification of MBs 48 3.3.2 Characterization of MBs after Bacterial Capture 51 3.4 Acquisition of Raman Spectra 55 3.4.1 Comparison of P. gingivalis Raman Spectra With and Without the GNRs 55 3.4.2 Comparison of Enhancement Effects of Different GNRs Wavelengths 57 3.4.3 The Standard Curve of P. gingivalis OD value and Raman Intensity 58 3.4.4 Raman Spectra and Specificity Test of the MBs 60 Chapter 4 Discussion 63 4.1 Challenges Encountered in the Synthesis of NRs 64 4.2 The Selection of MBs Size 65 4.3 Comparison of Different GNRs for Raman Signal 67 4.4 Evaluation of Raman Shift Peaks in Bacterial Raman Spectroscopy 67 4.5 Limit of Detection 69 4.6 The Aggregation of MBS Affects the Raman Signal 70 Chapter 5 Conclusion 71 References 75

    1. Kornman, K.S., Mapping the Pathogenesis of Periodontitis: A New Look. Journal of Periodontology, 2008. 79(8S): p. 1560-1568.
    2. PAGE, R.C. and K.S. KORNMAN, The pathogenesis of human periodontitis: an introduction. Periodontology 2000, 1997. 14(1): p. 9-11.
    3. Socransky, S.S. and A.D. Haffajee, The Bacterial Etiology of Destructive Periodontal Disease: Current Concepts. Journal of Periodontology, 1992. 63(4S): p. 322-331.
    4. Eke, P.I., et al., Prevalence of Periodontitis in Adults in the United States: 2009 and 2010. Journal of Dental Research, 2012. 91(10): p. 914-920.
    5. Reich, E., Trends in caries and periodontal health epidemiology in Europe. International Dental Journal, 2001. 51(S6): p. 392-398.
    6. Luo, L.-S., et al., Secular trends in severe periodontitis incidence, prevalence and disability-adjusted life years in five Asian countries: A comparative study from 1990 to 2017. Journal of Clinical Periodontology, 2021. 48(5): p. 627-637.
    7. 衛生福利部, 國民健康調查報告. 台灣-衛生福利部, 2015.
    8. Kinane, D.F., P.G. Stathopoulou, and P.N. Papapanou, Periodontal diseases. Nature Reviews Disease Primers, 2017. 3(1): p. 17038.
    9. Baelum, V. and F. Scheutz, Periodontal diseases in Africa. Periodontology 2000, 2002. 29(1).
    10. Tonetti, M.S., T.E. Van Dyke, and o.b.o.w.g.o.t.j.E.A. workshop*, Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/AAPWorkshop on Periodontitis and Systemic Diseases. Journal of Periodontology, 2013. 84(4S): p. S24-S29.
    11. Hajishengallis, G., Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends in Immunology, 2014. 35(1): p. 3-11.
    12. Lamont, R.J., H. Koo, and G. Hajishengallis, The oral microbiota: dynamic communities and host interactions. Nature Reviews Microbiology, 2018. 16(12): p. 745-759.
    13. Darveau, R.P., Periodontitis: a polymicrobial disruption of host homeostasis. Nature Reviews Microbiology, 2010. 8(7): p. 481-490.
    14. How, K.Y., K.P. Song, and K.G. Chan, Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Frontiers in Microbiology, 2016. 7.
    15. Kuboniwa, M., et al., Insights into the virulence of oral biofilms: discoveries from proteomics. Expert Review of Proteomics, 2012. 9(3): p. 311-323.
    16. Jiao, Y., M. Hasegawa, and N. Inohara, The Role of Oral Pathobionts in Dysbiosis during Periodontitis Development. Journal of Dental Research, 2014. 93(6): p. 539-546.
    17. Hajishengallis, G. and R.J. Lamont, Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Molecular Oral Microbiology, 2012. 27(6): p. 409-419.
    18. Abusleme, L., et al., The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. The ISME Journal, 2013. 7(5): p. 1016-1025.
    19. Ally, N., et al., Characterization of the Specificity of Arginine-Specific Gingipains from Porphyromonas gingivalis Reveals Active Site Differences between Different Forms of the Enzymes. Biochemistry, 2003. 42(40): p. 11693-11700.
    20. FC III, G., Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis. Front. Biosci., 2008. 13: p. 2041-2059.
    21. Wang, J., et al., Microbial- and host immune cell-derived extracellular vesicles in the pathogenesis and therapy of periodontitis: A narrative review. Journal of Periodontal Research, 2024. n/a(n/a).
    22. Deshpande, R.G., C.A. Khan Mb Fau - Genco, and C.A. Genco, Invasion of aortic and heart endothelial cells by Porphyromonas gingivalis. Infect Immun, 1998(0019-9567 (Print)): p. 5337-5343.
    23. Herzberg, M.C. and M.W. Meyer, Effects of Oral Flora on Platelets: Possible Consequences in Cardiovascular Disease. Journal of Periodontology, 1996. 67(10S): p. 1138-1142.
    24. Geismar, K., et al., Periodontal Disease and Coronary Heart Disease. Journal of Periodontology, 2006. 77(9): p. 1547-1554.
    25. Li, L., et al., Intracellular survival and vascular cell-to-cell transmission of Porphyromonas gingivalis. BMC Microbiology, 2008. 8(1): p. 26.
    26. Pussinen, P.J., et al., Antibodies to Periodontal Pathogens and Stroke Risk. Stroke, 2004. 35(9): p. 2020-2023.
    27. Olsen, I. and Ö. Yilmaz, Possible role of Porphyromonas gingivalis in orodigestive cancers. Journal of Oral Microbiology, 2019. 11(1): p. 1563410.
    28. Michaud, D.S., et al., A Prospective Study of Periodontal Disease and Pancreatic Cancer in US Male Health Professionals. JNCI: Journal of the National Cancer Institute, 2007. 99(2): p. 171-175.
    29. Ahn, J., S. Segers, and R.B. Hayes, Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis, 2012. 33(5): p. 1055-1058.
    30. Katz, J., et al., Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. International Journal of Oral Science, 2011. 3(4): p. 209-215.
    31. Binder Gallimidi, A., et al., Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget, 2015(1949-2553 (Electronic)): p. 22613-22623.
    32. Whitmore, S.E. and R.J. Lamont, Oral Bacteria and Cancer. PLOS Pathogens, 2014. 10(3): p. e1003933.
    33. Scannapieco, F.A., Role of Oral Bacteria in Respiratory Infection. Journal of Periodontology, 1999. 70(7): p. 793-802.
    34. Scannapieco, F.A., R.B. Bush, and S. Paju, Associations Between Periodontal Disease and Risk for Nosocomial Bacterial Pneumonia and Chronic Obstructive Pulmonary Disease. A Systematic Review. Annals of Periodontology, 2003. 8(1): p. 54-69.
    35. Mei, F., et al., Porphyromonas gingivalis and Its Systemic Impact: Current Status. Pathogens, 2020. 9(11): p. 944.
    36. Li, Q., et al., Porphyromonas gingivalis modulates Pseudomonas aeruginosa-induced apoptosis of respiratory epithelial cells through the STAT3 signaling pathway. Microbes and Infection, 2014. 16(1): p. 17-27.
    37. Awano, S., et al., Oral Health and Mortality Risk from Pneumonia in the Elderly. Journal of Dental Research, 2008. 87(4): p. 334-339.
    38. Mealey, B.L. and T.W. Oates, Diabetes Mellitus and Periodontal Diseases. Journal of Periodontology, 2006. 77(8): p. 1289-1303.
    39. King, G.L., The Role of Inflammatory Cytokines in Diabetes and Its Complications. Journal of Periodontology, 2008. 79(8S): p. 1527-1534.
    40. Taylor, G. and W. Borgnakke, Periodontal disease: associations with diabetes, glycemic control and complications. Oral Diseases, 2008. 14(3): p. 191-203.
    41. Preshaw, P.M., et al., Periodontitis and diabetes: a two-way relationship. Diabetologia, 2012. 55(1): p. 21-31.
    42. Offenbacher, S., et al., Maternal Periodontitis and Prematurity. Part I: Obstetric Outcome of Prematurity and Growth Restriction. Annals of Periodontology, 2001. 6(1): p. 164-174.
    43. Han, Y.W., Oral Health and Adverse Pregnancy Outcomes – What’s Next? Journal of Dental Research, 2011. 90(3): p. 289-293.
    44. Barak, S., et al., Evidence of Periopathogenic Microorganisms in Placentas of Women With Preeclampsia. Journal of Periodontology, 2007. 78(4): p. 670-676.
    45. Boggess, K.A., et al., Maternal Periodontal Disease Is Associated With an Increased Risk for Preeclampsia. Obstetrics & Gynecology, 2003. 101(2): p. 227-231.
    46. Michalowicz, B.S., et al., The effects of periodontal treatment on pregnancy outcomes. Journal of Clinical Periodontology, 2013. 40(s14): p. S195-S208.
    47. Lyons, S.R., A.L. Griffen, and E.J. Leys, Quantitative Real-Time PCR for<i>Porphyromonas gingivalis</i> and Total Bacteria. Journal of Clinical Microbiology, 2000. 38(6): p. 2362-2365.
    48. Macey, M.G., Flow cytometry: principles and clinical applications. Medical laboratory sciences, 1988. 45(2): p. 165-173.
    49. Levsky, J.M. and R.H. Singer, Fluorescence in situ hybridization: past, present and future. Journal of Cell Science, 2003. 116(14): p. 2833-2838.
    50. Silva Zatti, M., T. Domingos Arantes, and R. Cordeiro Theodoro, Isothermal nucleic acid amplification techniques for detection and identification of pathogenic fungi: A review. Mycoses, 2020. 63(10): p. 1006-1020.
    51. Weiss, R., et al., Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. Analyst, 2019. 144(3): p. 943-953.
    52. Zheng, X.-S., et al., Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018. 197: p. 56-77.
    53. Raman, C.V., A new radiation. Indian Journal of physics, 1928. 2: p. 387-398.
    54. Singh, R., CV Raman and the Discovery of the Raman Effect. Physics in Perspective, 2002. 4: p. 399-420.
    55. Ferraro, J.R., Introductory raman spectroscopy. 2003: Elsevier.
    56. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
    57. Jeanmaire, D.L. and R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
    58. Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics, 1978. 69(9): p. 4159-4161.
    59. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 1977. 99(15): p. 5215-5217.
    60. Nie, S. and S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275(5303): p. 1102-1106.
    61. Kneipp, K., et al., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters, 1997. 78(9): p. 1667-1670.
    62. Moskovits, M., Surface-enhanced spectroscopy. Reviews of Modern Physics, 1985. 57(3): p. 783-826.
    63. Otto, A., et al., Surface-enhanced Raman scattering. Journal of Physics: Condensed Matter, 1992. 4(5): p. 1143.
    64. Murphy, C.J., et al., Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts of Chemical Research, 2008. 41(12): p. 1721-1730.
    65. Jain, P.K., et al., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research, 2008. 41(12): p. 1578-1586.
    66. Camden, J.P., et al., Probing the Structure of Single-Molecule Surface-Enhanced Raman Scattering Hot Spots. Journal of the American Chemical Society, 2008. 130(38): p. 12616-12617.
    67. Berry, V., et al., Deposition of CTAB-Terminated Nanorods on Bacteria to Form Highly Conducting Hybrid Systems. Journal of the American Chemical Society, 2005. 127(50): p. 17600-17601.
    68. Sau, T.K. and C.J. Murphy, Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir, 2004. 20(15): p. 6414-6420.
    69. Ye, X., et al., Using Binary Surfactant Mixtures To Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods. Nano Letters, 2013. 13(2): p. 765-771.
    70. Smith, D.K. and B.A. Korgel, The Importance of the CTAB Surfactant on the Colloidal Seed-Mediated Synthesis of Gold Nanorods. Langmuir, 2008. 24(3): p. 644-649.
    71. Sivapalan, S.T., et al., Off-Resonance Surface-Enhanced Raman Spectroscopy from Gold Nanorod Suspensions as a Function of Aspect Ratio: Not What We Thought. ACS Nano, 2013. 7(3): p. 2099-2105.
    72. Zhu, Y., et al., Construction of Graphene@Ag-MLF composite structure SERS platform and its differentiating performance for different foodborne bacterial spores. Microchimica Acta, 2023. 190(12): p. 472.
    73. Pezzotti, G., Raman spectroscopy in cell biology and microbiology. Journal of Raman Spectroscopy, 2021. 52(12): p. 2348-2443.
    74. Jarvis, R.M., A. Brooker, and R. Goodacre, Surface-Enhanced Raman Spectroscopy for Bacterial Discrimination Utilizing a Scanning Electron Microscope with a Raman Spectroscopy Interface. Analytical Chemistry, 2004. 76(17): p. 5198-5202.

    無法下載圖示 校內:2029-08-29公開
    校外:2029-08-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE