| 研究生: |
林政儀 Lin, Cheng-I |
|---|---|
| 論文名稱: |
應用於大面積平面顯示器的薄膜電晶體新穎關鍵技術之研究 Studies of Novel Technologies to Prepare Thin Film Transistor for Large Scale Panel Display Applications |
| 指導教授: |
方炎坤
Fang, Y.K. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 複晶矽 、薄膜電晶體 、液晶顯示器 |
| 外文關鍵詞: | TFT, ZnO, IGZO, display, Al2O3, HfO2 |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,吾人研究改進薄膜電晶體的關鍵製程技術及結構,藉以提升元件特性以便應用於大面積平面顯示器。大面積平面顯示器的 薄膜電晶體要求速度快,漏電流少及體積小或全透明結構以提高開口 率( aperture ratio)。
為達到此目標,在傳統非晶矽薄膜電晶體中,吾人利用電漿輔助成長化學氣相沉積,堆疊製程方式及利用氫氣表面退成長出高品質的奈米矽晶薄膜,來增加元件移動率改善元件飽和電流及開關電流比。也運 用非n型高摻雜半導體層的最佳化雜質沉積,造成非晶矽與奈米矽之間 晶體結構的轉換,來降低n型高摻雜半導體層薄膜的電阻值。實驗證實此方式不僅優化了元件特性,亦提升了飽和電流(370%)也提升了開關比(1515%)。
此外,更進一步選用非晶氧化銦鎵鋅(Indium gallium zinc oxide, IGZO) 這種新材料來進一步提升元件速率及透明度特性。我們首先使用IGZO 單 通道/單閘極絕縁的下閘極 全透明薄膜電晶體的結構 ,透過阻值分析、拉曼光譜分析(Raman)、傅立葉轉換紅外線光譜儀(FTIP)、成份分析 (EDS)、掃描式電子顯微鏡(SEM)、X-光繞射儀(XRD)、原子力顯微鏡(AFM)等技術來分析薄膜並利用HP4156C半導體參數分析儀/光譜儀 (UV/VIS/NIR spectrometer)量測研究元件電特性及透明度。
接著 ,更增加了通道緩衝層 ( Channel buffer Layer) 及閘極絕縁阻檔層( Gate dielectric barrier )作成IGZO 雙通道/雙閘極絕縁的下閘極全透明薄膜電晶體。實驗顯示,比起單通道/單閘極絕縁者,此結構約可提升3次方的開 關電流比,減 少 800 倍 的漏 電 流,透 光 度 也 由 84%改善到 86.4 %,如 此使元件更適合大面積的運用。
另 外,值 得 一 提的 是,在論文中,吾人除了研發各種薄膜電晶體的關鍵製程技及結構外,也同時對這些關鍵製程技術及結構改善薄膜電晶體性能的機制與理論 , 配合簡明圖式作詳盡的說明。
Generally, the thin film transistor (TFT) for a large panel should have the characteristics of high channel mobility, large on-current and low leakage. Besides, it also needs small size and high transparence to attain high aperture ratio. To match these requirements, in this thesis, we studied the novel technologies to promote conventional a-Si TFT performances and use of indium gallium zinc oxide (IGZO) instead of a-Si as active layer to enhance channel mobility and device transparence.
In the conventional a-Si TFT, first, we optimized the phosphorus (P) doping concentration in the source / drain (S/D) n+ layer to transfer the deposited Si film from an amorphous structure to the nano one, thus achieving the lowest S/D contact resistance .As a result, both on-current and on/off current ratio were improved up to 370% and 1515 %, respectively.
Next, we employed the layer by layer technology with a hot wire chemical vapor deposition system (HWCVD) to directly deposit high quality nano-Si film , and then used a post hydrogen anneal (PHA) to treat the film surface. The experimental results showed that the PHA could improve (about 10%) both saturation and off currents. Especially for a multilayer channel structure, the improvement became more obviously.
Furthermore, the high performance amorphous InGaZnO full transparent thin film transistors (TTFT) with both single and double channel were prepared on glass substrate and studied in details. In the double channel TTFT, the rapid thermal annealed ZnO was added as the second channel and used to buffer the InGaZnO deposition. Besides, we used the Al2O3 as the HfO2 gate dielectric barrier to lower gate leakage. As a result, both technologies promote ~ 3 orders in on/off current ratio and reduce leakages current ~ 800 times, and improve the average transparence from 84% to 86.4 % in the range of 500nm-800nm wavelengths.
In the thesis, except the novel technologies studies, we also investigate these improvement origins and illustrate them in details with the comprehensive the schematic diagrams.
[1] C.I Lin, Y.K. Fang, F.R. Juang, Y.T. Chiang, P.T. Chen, and C.W. Chen, “The effect of post-hydrogen annealing and multilayer channel structure on nano-crystalline silicon thin film transistor performance” Journal of Physics D-Applied Physics, vol. 43, Issue 19, pp. 195102, MAY 19 2010.
[2] R. Chen, W. Zhou, M. Zhang, M. Wong, and H.S. Kwok, “Self-Aligned Indium Gallium Zinc Oxide Thin-Film Transistor With Phosphorus-Doped Source/Drain Regions”IEEE Electron Device Letters, vol. 33, pp. 1150-1152, July 3 2012.
[3] Y. Kuo, “Thin Film Transistors: Materials and Processes” Boston: Kluwer Academic Publishers, vol. 1, pp.228, 2003.
[4] C.I Lin, Y.K. Fang, C.H. Kuo,” Studies of the New Findings in Preparing a Scaled Amorphous Silicon Thin Film Transistor”, 2014.
[5] C.I Lin, Y.K. Fang, W.C. Chang,” The IGZO Fully Transparent Oxide Thin Film Transistor on Glass Substrate” , 2014
[6] C.I Lin, Y.K. Fang, W.C. Chang, M.W. Chiou and C.W. Chen,” Effect of gate barrier and channel buffer layer on electric properties and transparence of the a-IGZO thin film transistor”, 2014
[7] B.D. Cullity, “Elements of X-Ray Diffraction” Addison-Wesley, Reading, MA, vol. 2,
pp.284 1978.
[8] Sakamoto, C. Adachi, T. Koyama, Y. Taniguch, C. D. Merrit,H. Murta and Z. H. Kafafi, “Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules”Appl. Phys. Lett., vol. 75, no. 6, pp.766-768, August 1999.
[9] Y.Y.Ong, B.T. Chen, Francis E.H. Tay, and C. Iliescu, “Process Analysis and Optimization on PECVD Amorphous Silicon on Glass Substrate”Journal of Physics: Conference Series, vol. 34, pp.812-817, May 2006.
[10] S.D. Wolf and M.Kondo” Surface Passivation Assivation Properties of Stacked Doped PECVD a-Si:H Layers for Hetero-Structure c-Si Solar Cells” Energy Conversion IEEE ,vol. 2,pp.1469-1472, May 2006.
[11] N.M.Liao,W. Li,_Y.D. Jiang,Y.J. Kuang, K.C. Qi, Z.M.Wu, S.b. Li,” Raman study of a-Si:H films deposited by PECVD at various silane temperatures before glow-discharge” Appl. Phys. A, vol. 91, pp.349-352, May 2008.
[12] Y.T. Kim, S.G. Yoon, H. Kim, S.J. Suh, G.E. Janga and D.H. Yoon, “Crystallization of a-Si:H and a-Si C:H thin films deposited by PECVD ”Journal of Ceramic Processing Research, vol. 6, no. 4, pp.294-297, 2005.
[13] J. Geissbühler, S.D.Wolf, B.Demaurex, J.P. Seif, D.T.L. Alexander, L. Barraud, C.Ballif, ”Amorphous/crystalline silicon interface defects induced by hydrogen plasma treatments” Appl. Phys. Lett., vol. 102, no. 23, pp231604, June 2013.
[14] A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. D. Wolf, “The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality” Appl. Phys. Lett., vol. 97, no. 18, pp.183505, Nov. 2010.
[15] A. Descoeudres, L. Barraud, S. D. Wolf, B. Strahm, D. Lachenal, C. Guerin, Z. C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, and C. Ballif, “Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment”Appl. Phys. Lett., vol. 99, no. 12, pp.123506, Sep. 2011.
[16] C.W.Chen, T.C.Chang, P.T. Liu, H.Y. Lu, K.C.Wang, C.S.Huang, C.C.Ling, T.Y.Tseng, “High-Performance Hydrogenated Amorphous-Si TFT for AMLCD and AMOLED Applications” IEEE Electron Device Letters, vol. 26, pp.731-733, Oct. 2005.
[17] M.H. Lu, E. Ma, J. C. Sturm ,S. Wagner, “Amorphous silicon TFT active matrix OLED pixel” IEEE Conf. Proc., Laser Electron Optical Society Annual Meeting LEOS (Orlando, FL) pp.130–113, May 1998.
[18] T.Tsukada “Scaling theory of liquid-crystal displays addressed by thin-film
transistors” IEEE Trans. Electron Devices vol. 45, no. 2,pp.387–393, Feb. 1998.
[19] A. Sazonov, D. Striakhilev, C. H. Lee ,A. Nathan,”Low-temperature materials and thin film transistors for flexible electronics” Proc. IEEE, vol. 93, no. 8, pp. 1420–1428, Augest 2005.
[20] P.R.I. Cabarrocas, “New approaches for the production of nano-, micro-, and polycrystalline silicon thin films” Phys. Status Solidi (c), vol. 1, no. 5, pp.1115–1130, Jan. 2004.
[21] E.A. Guliants, W.A. Anderson “Study of dynamics and mechanism of metal induced
silicon growth “J. Appl. Phys. vol. 89, no. 8, pp.4648–4656, Feb. 2001.
[22] P.Alpuim, V. Chu and J.P. Conde, “Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition” J. Appl. Phys. vol.86, no. 7, pp.3812–3821,Oct. 1999.
[23] A. Matsuda “Growth mechanism of microcrystalline silicon obtained from reactive plasmas” Thin Solid Films ,vol. 337, no.1-2, pp.1–6, Jun. 1999.
[24] K. Takechi, M. Nakata, H.Kanoh, S.Otsuki, S.Kaneko, “Dependence of self-heating effects on operation conditions and device structures for polycrystalline silicon TFTs” IEEE Trans. Electron Devices vol. 35, no. 2, pp.251–257,Feb 2006.
[25] H.Wang, M.Wang, Z.Yang, H.Hao, M.Wong “Stress power dependent self-heating degradation of metal-induced laterally crystallized n-type polycrystalline silicon thin-film transistors” IEEE Trans. Electron Devices vol.54, no. 12, pp.3276–3284, Dec. 2007.
[26] E. M. C. Fortunato, P. M. C. Barquinha ‘”Fully Transparent ZnO Thin-Film Transistor
Produced at Room Temperature”.,Adv. Mater., vol. 17, no. 5, pp.590–594, Mar. 2004.
[27] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, “Transparent
thin film transistors using ZnO as an active channel layer and their electrical
properties”, Journal of Applied Physics, vol. 93, no. 3, pp. 1624-1626, Feb. 2003.
[28] K. H. Cherenack, Member, IEEE, N. S. Münzenrieder,.G. Tröster, Senior Member,
IEEE “Impact of Mechanical bending on ZnO and IGZO Thin-Film
Transistors ”,IEEE Electron Device Letters, vol. 31,no. 11,pp.1254 – 1256, Nov.
2010.
[29] C.H. Jung, D.J. Kim, Y.K. Kang, D.H. Yoon,”Transparent amorphous In–Ga–Zn–O
thin film as function of various gas flows for TFT applications” Thin Solid Films, vol.
517,no. 14, pp.4078–4081,May 2009.
[30] S.H. K.Park “Transparent ZnO Thin Film Transistor for the Application of High
Aperture Ratio Bottom Emission AM-OLED Display”SID, vol. 39, no. 1,
pp.629–632, May 2008.
[31] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, R.
Martins “Recent advances in ZnO transparent thin film transistors”Thin Solid Film,
vol. 487, no. 1-2, pp.205– 211. Sep. 2005.
[32] S.H.K. Park, C.S. Hwang, H.Y.Jeong, H. Y.Chu, K. I. Choa “Transparent ZnO-TFT
Arrays Fabricated by Atomic Layer Deposition” Electrochemical and Solid-State
Letters, vol.11, no. 1,pp.H10-H14,Nov. 2008.
[33]. K.U.Sim ,S.W.Shin, A.V. Moholkar ,J.H.Yun, J.H.Moon ,J.H. Kim “Effects of dopant
(Al, Ga, and In) on the characteristics of ZnO thin films prepared” Current Applied
Physics, vol.10, no. 3, pp. S463–S467. May 2010.
[34] J.H.Shin, D.K.Choi, “Eect of Oxygen on the Optical and the Electrical Properties of
Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering”, Journal
of the Korean Physical Society, vol. 53, no. 4, pp. 2019-2023.July 2008.
[35] J.Yao, N.Xu, S.Deng, J.Chen, J.She, H.P.D.Shieh, P.T.Liu, and Y.P.Huang
“Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen
Vacancy” IEEE Transactions on Electron Devices, vol. 58, No. 4, pp.1121-pp1126,
April 2011.
[36] S.H.K.Park, C.S.Hwang, H.Y.Jeong, H.Y.Chu, K.I.Choa “Transparent ZnO-TFT
Arrays Fabricated by Atomic Layer Deposition” Electrochemical and Solid-State
Letters, vol.11, no. 1, pp. H10-H14,Nov 2008.
[37] H.J.H. Chen, B.B.L. Yeh, H.C. Pan, J. S. Chen. “ZnO transparent thin-film transistors
with HfO2/Ta2O5 stacking gate dielectric” Electronics Letters vol. 44, no. 3,
pp.186-187, Jan 2008.
[38] S. S. Kim, B. H. You, J. H. Cho, D. G. Kim, B. H. Berkeley, N. D. Kim, “An 82-in. ultra-definition 120-Hz LCD TV using new driving scheme and advanced Super PVA technology” SID ,vol. 17,no. 2, pp.71-78. Feb. 2009.
[39] J.H. Song, H.L. Ning, W.G. Lee, S.Y. Kim, and S.S. Kim, “Views on the low-resistant bus materials and their process architecture for the large-sized post-ultra definition TFT-LCD. IMID, vol.8, pp.9-12, Ocr. 2008.
[40] R.Branquinho, J. V. Pinto, T.Busani, P.Barquinha, L.Pereira, P.V.Baptista, R. Martins, E.Fortunato. “Plastic Compatible Sputtered Ta2O5 Sensitive Layer for Oxide Semiconductor TFT Sensors” Journal of Display Technology,vol.8, no. 9, pp.723-728, Sept. 2013.
[41] M. Orita, H. Tanji, M. Mizuno, H. Adachi, I. Tanaka. “Mechanism of electrical conductivity of transparent InGaZnO4”. Phys Rev B, vol.61, no. 3, pp.1811-1816, Jau. 2000.
[42] J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K. W. Kwon, Y. Park. “High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma Passivation” Appl Phys Lett, vol. 93, no. 5, pp.053505, August 2008.
[43] J. H. Na, M. Kitamura, Y. Arakawa. “High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes” Appl Phys Lett, vol. 93, no. 6, pp. 063501, August 2008.
[44] K.Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano,H. Hosono. “Room-temperature
fabrication of transparent flexible thin-film transistors using amorphous oxide
semiconductors” Nature , vol. 432, pp. 488-491, Oct. 2004.
[45] S.H.K.Park,. C.S.Hwang, H.Y. Jeong, H. Y. Chu,K. I. Choa ”Transparent ZnO-TFT
Arrays Fabricated by Atomic Layer Deposition” Electrochemical and Solid-State
Letters , vol. 11, no. 1, pp. H10-H14, Nov. 2008.
[46] L. J. McDaid, S. Hall, W. Eccleston, J. C. Alderman ”The origin of the anomalous
off-current in SOI transistor” Proc. ESSDERC Conf ,pp.759-762. Sep.1989.
[47] B. Faughnan and A. C. Ipri, “A study of hydrogen passivation of grain boundaries in polysilicon thin-film transistors” IEEE Trans. Electron Devices vol. 36, no. 1, pp.101-107, Nov. 1989.
[48] S. K. Madan, and D. A. Antoniadis ”Leakage current mechanisms in hydrogen passivated fine-grain polycrystalline silicon on insulator MOSFETs” IEEE Trans. Electron Devices, vol. 33, no. 10, pp.1518-1528, Oct. 1986.
[49] J. G. Fossum, A. Oritz-Conde, H. Shichijo, S. K. Banerjee” Anomalous leakage current in LPCVD polysilicon MOSFETs” IEEE Trans. Electron Devices vol. 32, no. 9, pp.1878-1884, Sep. 1985.
[50] A. Rodriguez, E. G. Moreno, H. Pattyn, J. F. Nijs, and R. P. Mertens, “Model for
the anomalous off current of polysilicon thin film transistors and diodes”, IEEE
Trans. Electron Devices vol. 40, no. 5, pp.938-943, Sep. 1993.
[51] O. K. B. Lui and P. Migliorato, “A new generation-recombination model for device simulation including the Poole-Frenkel effect and phonon-assisted” Solid-State Electronics, vol. 41, no. 4, pp.575-583, April. 1997.
[52] M. Alvisi, F. D.Tomasi, M. R. Perrone, M. L. Protopapa, A. Rizzo, F. Sarto,S. Scaglione. “Laser damage dependence on structural and optical properties of ion-assisted HfO2 thin films” Thin Solid Films, vol. 396, no. 1-2, pp.44-52, Sep. 2001.
[53] Q. Fang , J.Y. Zhang , Z. Wang , M. Modreanu, B. J. O'sullivan, P. K. HURLEY , T. L. Leedham, D. Hywel, M. A. Audier, C. Jimenez , “Interface of ultrathin HfO2 films deposited by UV-photo-CVD” Thin Solid Films, vol. 453, no. 1-2, pp.203-207, April 2004.
[54] John Robertson. Electronic structure and band offsets in High K oxides. IWGI TOKYO, pp.76-77, 2001
[55] R. L. Hoffman, B. J. Norris and J. F. Wager. “ZnO-based transparent thin-film transistors” Appl Phys Lett. vol. 82, no. 5, pp.733-735, Feb. 2003.
[56] J.S.Lee, S.Chang, S.M.Koo, S.Y.Lee. “High-Performance a-IGZO TFT With Gate
Dielectric Fabricated at Room Temperature” IEEE Electron Device Lett, vol. 31, no. 3,
pp.225-227, March 2010.
校內:2016-06-25公開