簡易檢索 / 詳目顯示

研究生: 李培裕
Lee, Pay-Yu
論文名稱: 奈米銅鋅錫硒晶體合成及其光電化學元件應用
The Synthesis and Photoelectrochemical Applications of Nano Cu2ZnSnSe4 Crystal
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 102
中文關鍵詞: 銅鋅錫硒合成光電化學
外文關鍵詞: Cu2ZnSnSe4, Synthesis, Photoelectrochemical
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,我們針對透過濕式化學方式合成奈米銅鋅錫硒晶體,並
    用Jeffamine D400 為螯合劑,Jeffamine D400具有雙胺基,可與反應性較差之金屬元素螯合,以簡單便宜且方便之製程方式製備出四元相奈米顆粒。研究中之反應參數以時間及溫度進行探討,可發現四元相銅鋅錫硒奈米顆粒在一開始是以三角狀之硒化銅相出現,隨時間及溫度之增加,慢慢朝三元、四元相轉換,顆粒形狀則由三角狀轉化為圓球狀且大小為20-25 nm,其四元銅鋅錫硒奈米顆粒進行光學性質量測後測得其能隙值為1.57 eV,非常適用於太陽能電池元件之吸收層使用。
    我們將所合成之四元銅鋅錫硒奈米顆粒做成漿料以塗佈方式製成薄膜,並運用於光感測器之元件,從電壓電流對光感應之量測中可發現,四元銅鋅錫硒初始反應元素比例為2:1:1:4時,有硒化銅殘留,其薄膜之載子濃過高,導致光電流與暗電流沒有明顯差異,不適用於光感測器。透過降低銅的初始比例為1.4:1:1:4後,可發現有效改善過導的情形,且可避免硒化銅二次相的產生以及降低反應時間,經由照光後可發現明顯的光暗電流差異特性及光感測器特性。
    我們並將銅鋅錫硒應用於光電化學元件,首先針對其對pH值感應特性進行探討,先將非真空方式製備之薄膜度上鉬電極後進行EGFET pH 感測器量測,可發現,銅鋅錫硒具有良好的pH感測特性,其敏感度可表達為汲級-源極電流與pH之對應,即經由計算後為7 μA/pH。從pH 感測器量測發現銅鋅錫硒對於pH值具有相當大的敏感特性,故後續應用於光電水解元件時,我們將使用1M NaCl為溶液,其pH值為中性7.0,避免pH值的變化而影響n型及p型銅鋅錫硒薄膜之光電水解特性,而其n型p型特性可透過改變材料中之鋅及錫的比例來控制,透過平帶電壓對應pH值之公式計算可發現n型半導體用於酸性溶液可得較高效率轉換及更小的平帶電壓,反之p型則適用於鹼性溶液。在此研究中所獲得之n型銅鋅錫硒光電水解轉換效率為2.81%,p型為0.42%,平帶電壓為-0.55V 及 0.48V,並整體比較可發現n型具有較好的轉換特性,然而就其穩定性而言,n型會在表面形成氧化反應,而可發現有光腐蝕的情況,p型銅鋅錫硒其表面產生還原反應,生成氫氣,而產生之氣體經由分析後為94.94%的氫氣,1.4%氧氣及3.66%氮氣。

    關鍵字:銅鋅錫硒;合成;光電化學

    In this work, we report a systematic study of the growth and evolution mechanism of quaternary Cu2ZnSnSe4 (CZTSe) nanocrystals (NCs) in a polyetheramine solvent. Pure-phase CZTSe NCs were synthesized by a facile one-pot heating process. High-quality CZTSe NCs were easily obtained by mixing the precursors and simply heating them to the reaction temperature. Synthesis parameters, including reaction temperature, reaction time, and precursor concentration, which influence the morphology, size, and monodispersity of CZTSe NCs, were studied in detail. Time- and temperature-dependent experiments were performed to observe the growth of CZTSe NCs. The final CZTSe NCs were evolved from triangle-like Cu2Se crystals to pure spherical crystals. On the basis of detailed time-dependent shape and elemental composition evaluations, a possible asynchronous doping growth and formation mechanism is proposed. Moreover, the optical and electrical properties of pure CZTSe NCs were also investigated. The band gap of CZTSe was approximately 1.57 eV, which is close to the optimum value for solar photoelectric conversion.
    The precipitated NCs were redispersed in toluene to form ink solutions for characterization. The properties of thin films of these inks were investigated as a function of the chemical compositions of the inks. The Cu/(Zn+Sn) ratio of the inks was varied from 0.7 to 1.0, while the Zn/Sn ratio was kept constant at 1. Photodetectors (PDs) with a Au/CZTSe/soda-lime glass structure were fabricated. The PD corresponding to a Cu/(Zn+Sn) ratio of 0.70 exhibited excellent photoresponsivity, and its dark current was 7.65 × 10−7 A when a bias of 10 V was applied.
    In the chemical applications, the sensing membrane of an extended-gate field-effect-transistor (EGFET) pH sensor with CZTSe nanoparticles was fabricated on a glass substrate through a solution-based method. The resulting EGFET pH sensors with CZTSe nanocrystals exhibited good sensing performances owing to the large sensing surface-to-volume ratio. The pH sensitivity calculated from the linear relation between the drain-source current and the pH value was 7 μA/pH, and that calculated from the linear relation between the reference voltage and the pH value was 9 mV/pH.
    By controlling the Zn-to-Sn ratio, the resulting CZTSe particle films exhibited a photoresponse of n-type and p-type semiconductor photoelectrodes in an aqueous solution containing NaCl as an electron scavenger. The comparison between n-type and p-type CZTSe photoelectrochemical (PEC) property are demonstrated, athe pplication of CZTSe thin film photoanodes in PEC results in the value of ηc = 2.81% was found in n-type. The lower ηc = 0.42%, obtained from p-type CZTSe photoanodes, the flat band potential of the n-type and p-type CZTSe in 1 M NaCl were obtained to be -0.55 and 0.48V, the net carrier concentration of the n-type and p-type calculated from Mott–Schottky plot were 3.38 x1018 and 2.73 x1018 cm-3, respectively.

    Keyword: Cu2ZnSnSe4; Synthesis; Photoelectrochemical

    Abstract (Chinese)……………………………………………………....I Abstract(English)…………………………………………………..….III Acknowledge……………………………………………………………V Figure Captions……………………………………………………………......IX Table Captions……………………………………………………..…XII Chapter.1 Introduction 1.1 Background…………………………………………………………...1 1.2 Cu2ZnSnSe4 thin film deposited by non-vacuum solution-based techniques ……………………………………………………………4 1.3 Thesis Overview……………………………………………………...5 Reference (Chapter.1)…………………………………………………….7 Chapter 2. Synthesis of CZTSe Nanoink via a Facile One-Pot Heating Route Based on Polyetheramine Chelation 2. 1. Introduction………………………………………………………..10 2.2. Experimental……………………………………………………......12 2.3. Results and discussion……………………………………………...13 2.4. Summary……………………………………………………………22 Reference (Chapter.2)…………………………………………………...23 Chapter 3. The Cu concentration Effect on the Electro-Optical Properties of Cu2ZnSnSe4 thin films prepared by a non-vacuum solution-based nano-inks process 3.1. Introduction………………………………………………………...39 3.2. Experimental………………………………………………………..42 3.3. Results and discussion……………………………………………...44 3.4. Summary……………………………………………………………54 Reference (Chapter.3)…………………………………………………...55 Chapter 4. Sensing Performance of EGFET pH Sensors with CZTSe Nanoparticles 4.1. Introduction………………………………………………………...71 4.2. Experimental………………………………………………………..72 4.3. Results and discussion……………………………………………...73 4.4. Summary……………………………………………………………75 Reference (Chapter.4)…………………………………………………...76 Chapter 5. Photoelectrochemical Characterization of n-Type and p-Type Thin-Film Nanocrystalline Cu2ZnSnSe4 Photocathodes 5.1. Introduction………………………………………………………...80 5.2. Experimental………………………………………………………..82 5.3. Results and Discussion…………………………………………......83 5.4. Summary……………………………………………………………91 Reference (Chapter.5)…………………………………………………...93 Chapter.6 Conclusion and Future work 6.1 Conclusion…………………………………………………...…….101 6.2 Future works…………………………………………………….....102

    Chapter.1
    [1] L. Guen,; W.S Glaunsinger, J. Solid State Chem. .35.1. (1980).10.
    [2] H. Matsushita, T.Ichikawa, A. Katsui, A. J. Mater. Sci. 40.8. (2005).2003.
    [3] I. Masaya; N. Yuki. Jpn. J. Appl. Phys., 48. 9. (2009) 090202.
    [4] K. Hironori; S. Kotoe; W. Tsukasa; S. Hiroyuki; K. Tomomi; M. Shinsuke. Sol. Energy. Mater. Sol.Cells. 65. (2001) 141.
    [5] M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, D. B. Mitzi. Energy Environ. Sci. 7, (2014) 1029.
    [6] S. Chen, X. G. Gong, A. Walsh, and S. H. Wei. Appl. Phys. Lett. 94 .4. (2009) .041903.
    [7] "Antifreeze, cheap materials may lead to low-cost solar energy". Oregon State University. July 3, (2013).
    [8] V. Fthenakis. Renew. Sust. Energ. Rev. 13 .9. (2009) 2746.
    [9] C. Wadia, A. P. Alivisatos, and D. M. Kammen. Environ. Sci. Technol. 43.6. (2009). 2072–7.
    [10] G. Zoppi1, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg and L. M. Peter, Prog Photovoltaics: Res. Appl. 17 (2009).315.
    [11] G. S. Babu, Kumar Y. B. K. Kumar, P.U. Bhaskar, V. S. Raja, J. Phys. D. Appl. Phys .41 (2008).205305.
    [12] E. Mellikov, D. Meissner, T. Varema, M. Altosaar, M. Kauk, O.Volobujeva, J. Raudoja, K.Timmo, M.Danilson, Sol. Energy. Mater. Sol.Cells. 93. (2009) 65.
    [13] R. A. Wibowo, W. S. Kim, E. S. Lee, B. Munir, K. H. Kim, J. Phys. Chem. Solids. 68, (2009). 1908
    [14] R. A.Wibowo, E. S. Lee, B. Munir, K. H. Kim, Phys. Status Solidi (a) 204, (2007) 3373.
    [15] O. Volobujeva, J.Raudoja, E. Mellikov, M.Grossberg, S. Bereznev, R. Traksmaa, J. Phys. Chem. Solids. 70. (2009) 567.
    [16] T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, phys. stat. sol. (a) 203, No. 11, (2006) 2593.
    [17] S. Yoon , T.Yoon, K. S. Lee, S. Yoon, J. M. Ha, S. Choe, Sol. Energy Mater. Sol. Cells. 93. (2009) 783.
    [18] Q. Guo, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc.131, (2009).11672.
    [19] W. Wang, Y. W. Su, C. H. Chang, Sol. Energy Mater. Sol. Cells. 95. (2011), 2616.
    [20] M.G. Panthani, V. Akhavan, B. Goodfellow , J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel. J. Am. Chem. Soc.130,(2008) 16770.
    [21] J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, Chem Mater .20, (2008).6906.
    [22] Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Sol. Cells. 94, (2010) 2042.
    [23] Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, H. W. Hillhouse. Nano Lett., vol. 8, no. 9, (2008) 2982.
    [24] K. Tanaka , M. Oonuki, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells. 93, (2009) 583.
    [25] C. Steinhagen , M. G. Panthani, V. Akhavan , B.Goodfellow ,B. Koo, B.A. Korgel, “, J. Am. Chem. Soc. 131.(2009) 12554.
    [26] T. K .Todorov , J. J. Tang, S. Bag , O. Gunawan , T. Gokmen , Y. Zhu, and D. B. Mitzi., Adv. Energy Mater. 3, (2012) 34.
    [27] M. T. Winkler, W. Wang, O. Gunawan, H. J. Hovel, T. K. Todorov, D. B. Mitzi. Energy Environ. Sci. 7, (2014) 1029.

    Chapter.2
    [1] H. Katagiri, N.I.Shigaki, T.I.Shida, K.Saito, Jpn. J. Appl. Phys 40 (2001) 500.
    [2] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, S.Miyajima, Sol. Energy Mater. Sol. Cells 65 (2001) 141.
    [3] S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, J. H. Yun, Appl. Phys. Lett. 97 (2010) 021905-1.
    [4] D . B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol. Cells 95(2011)1421.
    [5] T. K. Todorov , J. Tang , S. Bag , O. Gunawan , T. Gokmen , Y. Zhu , and D. B. Mitzi, Adv. Energy Mater. 2012, DOI: 10.1002/aenm.201200348
    [6] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha. Appl. Phys. Lett 97, (2010) 143508.
    [7] I. Repins, M. A. Contreras, B. Egaas,C. D. Hart, J. Scharf , C.L. Perkins, B. To and R. Noufi. Prog. Photovolt. Res. Appl. 16 (2008) 235.
    [8] G. S. Babu, Y. B. Kishore Kumar, P. U. Bhaskar, S. R. Vanjari, Sol. Energy Mater. Sol. Cells 94 (2010) 221.
    [9] A. Redinger and S. Siebentritt. Appl. Phys. Lett. 97 (2010) 092111-3.
    [10] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter, Prog. Photovolt. Res. Appl.17 (2009) 315.
    [11] N. Kamoun, H. Bouzouita and B. Rezig” Thin Solid Films 515 (2007) 5949
    [12] M. Ganchev, L. Kaupmees, J.Iliyna, J.Raudoja, O. Volobujeva, H. Dikov, M.Altosaar, E. Mellikov, T.Varema. Energy Procedia 2 (2010) 65.
    [13] R. A. Wibowo, E. S. Lee, B. Munir, and K. H. Kim. Phys. stat. sol. (a) 204, No. 10 (2007) 3373.
    [14] L. Sun , J. He, H. Kong, F. Yue, P. Yang, J. Chu. Sol. Energy Mater. Sol. Cells 95 (2011) 2007.
    [15] E. Mellikov, D. Meissner, T. Varema, M. Altosaar, M. Kauk, O. Volobujeva, J. Raudoja, K. Timmo, M. Danilson, Sol. Energy Mater. Sol. Cells 93 (2009) 65.
    [16] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, D. B. Mitzi, Prog. Photovolt. Res. Appl. 20 (2012) 6.
    [17] T. K. Todorov, K. B. Reuter, D. B. Mitzi, Adv. Mater. 22 (2010) 156.
    [18] T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, , phys. stat. sol. (a) 203 (2006) No. 11, 2593.
    [19] S. Yoon , T.Yoon, K. S. Lee, S. Yoon, J. M. Ha, S. Choe, Sol. Energy Mater. Sol. Cells. 93 (2009) 783.
    [20] Q. Guo, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc.131 (2009) 11672.
    [21] W. Wang, Y. W. Su, C. H. Chang, Sol. Energy Mater. Sol. Cells. 95 (2011) 2616.
    [22] M. G. Panthani, V. Akhavan, B. Goodfellow , J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel J. Am. Chem. Soc.130 (2008) 16770.
    [23] J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, , Chem Mater .20 (2008) 6906.
    [24] Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Sol. Energy Mater. Sol. Cells. 94 (2010) 2042.
    [25] Q. Guo, S. J. Kim, M. Kar, W. N. Shafarman, R. W. Birkmire, E. A. Stach, R. Agrawal, H. W. Hillhouse. Nano Lett. vol. 8, no. 9 (2008) 2982.
    [26] K. Tanaka , M. Oonuki, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells. 93 (2009) 583.
    [27] C. Steinhagen , M. G. Panthani, V. Akhavan , B.Goodfellow ,B. Koo, B.A. Korgel, J. Am. Chem. Soc. 131 (2009) 12554.
    [28] B. Koo, R. N. Patel, and B. A. Korge, J. Am. Chem. Soc. 131 (2009) 3134.
    [29] P. M. Allen, M. G. Bawendi, J. Am. Chem. Soc. 130, (2008) 9240.
    [30] Q. Guo, G. M.Ford, W.C.Yang, B. C. Walker, E. A. Stach, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc132 (33) (2010) 17384.
    [31] H. Wei, W. Guo, Y. Sun, Z. Yang, Y. Zhang. Mater. Lett. 64 (2010) 1424.
    [32] T. Kameyama, T. Osaki, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabata and T. Torimoto, J. Mater. Chem. 20 (2010) 5319.
    [33] M. Ahmadi, S. S. Pramana, L. Xi, C. Boothroyd, Y. M. Lam, and S. Mhaisalkar. J. Phys. Chem. C 116 (2012) 8202.
    [34] M. Ahmadi, S. S. Pramana, S. K. Batabyal, C. Boothroyd, S. G. Mhaisalkar, and Y. M. Lam, Inorg. Chem. 52 (2013) 1722.
    [35] S. N. Malik, S. Mahboob, N. Haider, M. A. Malik and P.O’Brien, Nanoscale, 3 (2011) 5132.
    [36] W. Yang, H. S. Duan, K. C. Cha, C. J. Hsu, W. C. Hsu, H. Zhou, B. Bob, and Y. Yang, J. Am. Chem. Soc. 135 (2013) 6915.
    [37] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov and D. B. Mitzi,” “Prog. Photovolt: Res. Appl. 20 (2012) 6.
    [38 ] W. C. Hsu, B. Bob, W. Yang, C. H. Chung and Y. Yang, Energy Environ. Sci. 5 (2012) 8564.
    [39] C. M. Fella, A. R. Uhl, Y. E. Romanyuk, and A. N. Tiwari, Phys. Status Solidi A 209, No. 6 (2012) 1043.
    [40] S. K. Saha, A. Guchhait and A. J. Pal, Phys. Chem. Chem. Phys. 14 (2012) 8090.
    [41] Y. Liu, D. Yao, L. Shen, H. Zhang, X. Zhang, and B. Yang,” J. Am. Chem. Soc. 134 (2012) 7207.
    [42] J. J.Wang, J.S. Hu, Y.CG. Guo, L. J. Wan, NPG Asia Mater. 4 (2012) e2.
    [43] J. Wang, X. Xin and Z. Lin, Nanoscale, 3 (2011) 3040.
    [44] S. Ahn, S. Jung, J.Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong and J. H. Yun Appl. Phys. Lett. 97, 2 (2010) 021905.
    [45] M. Grossberg , J. Krustok, K. Timmo, M. Altosaar, Thin Solid Films 517 (2009) 2489.
    [46] P. M. P. Salomé, P. A. Fernandes, and A. F. da Cunha, Phys. Status Solidi C 7, No. 3–4 (2010) 913.
    [47] P. M. P. Salomé , P.A. Fernandes, A.F. da Cunha, Thin Solid Films 517 (2009) 2531.
    [48] K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser and Y. J. Chabal, Chem. Mater. 24 (2012), 3153.
    [49] V. Izquierdo-Roca, A. Pérez-Rodríguez,a_ A. Romano-Rodríguez, and J. R. Morante, J. Appl. Phys. 101 (2007) 103517.
    [50] S. Deka, A. Genovese, Y. Zhang, K. Miszta, G. Bertoni, R. Krahne. R, C. Giannini, and L. Manna. J. AM. CHEM. SOC. 132 (2010) 8912.
    [51] T. Tanaka., T. Sueishi, K. Saito,Q. Guo, M. Nishio,. J. Appl. Phys. 111, (2012) 053522.
    [52] Liao. H. C, Jao. M. H, Shyue. J. J, Chen. Y. F and Su. W. F, J. Mater. Chem. A 1(2013) 337.
    [53] P. Kumar and K. Singh, J. Opt. Biomed. Mater Volume 1, Issue 1 (2009) 59.
    [54] R.G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533.
    [55] S. Li, D. Pan, J. Cryst. Growth358 (2012) 38.
    [56] M. Cao , Y.Shen, J. Cryst. Growth.318 (2011) 1117.
    [57] H. Chen, S. M. Yu, D. W. Shin, J. B. Yoo, Nanoscale Res Lett. 5 (2010) 217.

    Chapter.3
    [1] I. Repins, M. A. Contreras, B. Egaas,C. D. Hart, J. Scharf , C.L. Perkins, B. To and R. Noufi, Prog. Photovolt. Res. Appl. 16 (2008) 235.
    [2] M. Bär, I. Repins, M. A. Contreras, L. Weinhardt, R. Noufi, and C. Heske Appl. Phys. Lett. 95, (2009) 052106.
    [3] T. K. Todorov , J. Tang , S. Bag , O. Gunawan , T. Gokmen , Yu Zhu , and D. B. Mitzi Adv. Energy Mater. (2012) DOI: 10.1002/aenm.201200348
    [4] D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, Sol. Energy Mater. Sol.Cells 95 (2011) 1421.
    [5] G. S. Babu, Y. B. Kishore Kumar, P. U. Bhaskar, S. R. Vanjari, Sol. Energy Mater. Sol. Cells 94 (2010) 221.
    [6] A. Redinger and S. Siebentritt. Appl. Phys. Lett. 97 (2010) 092111.
    [7] J. Haarstrich, H. Metzner, M. Oertel , C. Ronning , T. Rissom , C. A. Kaufmann , T. Unold, H. W. Schock , J. Windeln , W. Mannstadt , E. R. Voigt. Sol. Energy Mater. Sol. Cells 95 (2011) 1028.
    [8] G. S. Chen, J. C.Yang , Y. C. Chan, L. C. Yang , W. Huang. Sol. Energy Mater. Sol. Cells 93 (2009) 1351.
    [9] Y. Z. Li, X.D. Gao, C. Yang, F.Q. Huang. J. Alloys Compd.505 (2010) 623
    [10] D. H. Kuo, W. D. Haung , Y. S. Huang , J. D. Wu , Y. J. Lin. Thin Solid Films 518 (2010) 7218.
    [11] D. H. Kuo, W. D. Haung , Y. S. Huang , J. D. Wu , Y. J. Lin. Surf. Coat. Technol. 205 (2010) S196.
    [12] N. Kamoun, H. Bouzouita and B. Rezig Thin Solid Films 515 (2007) 5949.
    [13] S. Ahn, K. H. Kim, J. H. Yun and K. H. Yoon. J. Appl. Phys. 105 (2009) 113533.
    [14] Y. P. Fu, R. W. You and K. K. Lew. J. Electrochem. Soc., 156. 12 (2009) D553.
    [15] M. Ganchev, L. Kaupmees, J.Iliyna, J.Raudoja, O. Volobujeva, H. Dikov, M.Altosaar, E.Mellikov, T.Varema. Energy Procedia 2 (2010) 65–70.
    [16] L. Ribeaucourt , E. Chassaing, G. Savidand, D. Lincot, Thin Solid Films 519 (2011) 7241–7244
    [17] R. A. Wibowo, E. S. Lee, B. Munir, and K. H. Kim. Phys. stat. sol. (a) 204, No. 10 (2007) 3373.
    [18] L. Sun , J. He, H. Kong, F. Yue, P. Yang, J. Chu. Sol. Energy Mater. Sol. Cells 95 (2011) 2907..
    [19] D. B. Mitzi. Adv. Mater. 21 (2009) 3141-3158.
    [20] T. K. Todorov, K. B. Reuter and D. B. Mitzi. Adv. Mater. 22 (2010) E156.
    [21] B. D. Weil, S. T. Connor and Y. Cui. J. Am. Chem. Soc. 132 (2010) 6642.
    [22] Q. Guo, G.M. Ford, W. C.Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, , R. Agrawal, J. Am. Chem. Soc132 (33) (2010), pp 17384.
    [23] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara and B. A. Korgel. J. Am. Chem. Soc. 130 (2008) 16770-7.
    [24] M. E. Norako, M.A. Franzman and R.L. Brutchey.” Chem. Mater. 21 (2009) 4299–4304.
    [25] S. C. Riha, B.A. Parkinson, A.L. Prieto, J. Am. Chem. Soc. 131 (2009) 12054–12055.
    [26] Q. Guo, G.M. Ford, H.W. Hillhouse, R. Agrawal, Nano Lett. 9 (2009) 3060.
    [27] C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, J. Am. Chem. Soc. 131 (2009) 12554.
    [28] A. Shavel , J. Arbiol & A. Cabot, J. Am. Chem. Soc. 132, (2010) 4514.
    [29] X. Lu, Z. Zhuang, Q. Peng, & Y. Li, Chem. Commun. 47, (2011) 3141.
    [30] J. J. Wang, , Y. Q. Wang, F. F. Cao , Y. G. Guo & L. J. Wan, J. Am. Chem. Soc. 132, (2010) 12218.
    [31] M. E.Norako, & R. L. Brutchey, Chem. Mater. 22, (2010) 1613.
    [32] D. Pan, L. An, Z. Sun, W. Hou , Y. Yang, Z. Yang, & Y. Lu, J. Am. Chem. Soc. 130, (2008) 5620.
    [33] J. J. Wang, J. S. Hu, Y .G. Guo, L. J. Wan, NPG Asia Mater. 4, (2012) e2.
    [34] S. K. Batabyal, , L. Tian, , N. Venkatram, W. Ji, & J. J. Vittal, Phase-selective J. Phys. Chem. C. 113, (2009).15037.
    [35] M. Grossberg , J. Krustok, K. Timmo, M. Altosaar, Thin Solid Films 517 (2009) 2489.
    [36] F. Luckert, D. I. Hamilton, M. V. Yakushev, N. S. Beattie, G. Zoppi, M. Moynihan, I. Forbes, A. V. Karotki, A. V. Mudryi, M. Grossberg, J. Krustok, and R. W. Martin, Appl. Phys. Lett. 99, (2011) 062104.
    [37] C. Jiang, J. S. Lee, and D. V. Talapin,. J. Am. Chem. Soc., 134, (2012) 5010.
    [38] S. Deka, A. Genovese, Y. Zhang, K. Miszta, G. Bertoni, R. Krahne, C. Giannini, and L Manna, J. AM. CHEM. SOC. 132, (2010) 8912.
    [39] T. Tanaka, T.Sueishi, K. Saito, Q. Guo, M. Nishio,” J. Appl. Phys. 111, (2012) 053522.
    [40] M. Ahmadi, S. S. Pramana, L. Xi, C. Boothroyd, Y. M. Lam, and S. Mhaisalkar. J. Phys. Chem. C 116 (2012) 8202.
    [41] H. C. Liao, M. H. Jao, J. J. Shyue, Y. F. Chenc and W. F. Su, J. Mater. Chem. A, 1, (2013), 337.
    [42] P. Kumar and K. Singh, Opt. Biomed. Mater Volume 1, Issue 1 (2009) p. 59
    [43] S. Ahn, S. Jung, J.Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong and J. H. Yun Appl. Phys. Lett. 97, 2 (2010) 021905.
    [44] R. G. Pearson, J. Am. Chem. Soc. 85 (1963) 3533.

    Chapter.4
    [1] X.S. Fang, T.Y. Zhai, U.K. Gautam , L. Li , L. Wu, Y. Bando, D. Golberg. Progress in Materials Science. 56(2011), 175.
    [2] Q. Shao, R.H. Que, M.W. Shao, Q. Zhou, D.D.D. Ma, S.T. Lee. Appl. Surf. Sci. 257 (2011) 5559
    [3] X. S. Fang, L. M. Wu and L. F. Hu, Adv. Mater.23 (2011) 585
    [4] L.L. Chi, J.C. Chou, W.Y. Chung, T.P. Sun, S.K. Hsiung, Mater. Chem. Phys. 63 (2000) 19
    [5] B. S. Kang, H. T. Wang, F. Ren1, S. J. Pearton, T. E. Morey, D. M. Dennis, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, Appl. Phys. Lett. 91 (2007) 252103
    [6] S. M. U. Ali, O. Nur, M. Willander, and Bengt Danielsson, IEEE Transactions On Nanotechnology . 8 (2009) 678
    [7] H. Matsushita, T. Maeda, A.Katsui, T. Takizawa, J. Cryst. Growth. 208 (2000) 416.
    [8] I. D. Olekseyuk, L. D. Gulay, I. V. Dydchak, L. V. Pishach, O. V. Parasyuk, O. V. Marchuk, J. Alloys Compd. 340 (2002) 141
    [9] T. Maeda, S. Nakamura, T. Wada, Materials Research Society Symposium Proceedings. M04–03 (2009) 1165
    [10] S. Chen, X. G. Gong, A. Walsh, and S.H Wei, Appl. Phys. Lett. 94 (2009) 041903
    [11] J. Paier, R. Asahi, A. Nagoya, G. Kresse, Phys. Rev. B. 79 (2009) 115126-1
    [12] T. Kameyama, T. Osaki, K. I. Okazaki, T. Shibayama, A. Kudo, S. Kuwabatade and T. Torimoto, J. Mater. Chem. 20 (2010) 5319
    [13] H. Wei, W. Guo , Y. Sun , Z. Yang , Y. Zhang, Mater. Lett, 64 (2010) 1424
    [14] Y. Liu, D. Yao, L. Shen, H. Zhang, X. Zhang, and B.Yang, J. Am. Chem. Soc. 134 (2012) 7207
    [15] Q. Guo, H. W. Hillhouse, and R. Agrawal, J. Am. Chem. Soc. 131 (2009) 11672
    [16] C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel. J. Am. Chem. Soc. 131 (2009) 12554
    [17] M. G. Panthani, V. Akhavan, B. Goodfellow , J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, J. Am. Chem. Soc. 130( 2008) 16770
    [18] Q. Guo, S. J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, Nano Lett., 8 (2008) 2982
    [19] B. Koo, R. N. Patel, and B. A. Korge, J. Am. Chem. Soc. 131 (2009) 3134
    [20] P. M. Allen, M. G. Bawendi, J. Am. Chem. Soc. 130 (2008) 9240
    [21] D. E. Yates, S. Levine and T. W. Healy, J. Chem. Soc, Faraday Transactions. 1, 70 (1974) 1807
    [22] R. E. G. Van Hal, J.C.T. Eijkel, P. Bergveld., Sens. Actuators, A, 24 (1995) 201
    [23] H. K. Liao, L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung., Mater. Chem. Phys. 59 (1999) 6
    [24] K. B. Oldham, J. Electroanal. Chem. 613 (2007) 131

    Chapter.5
    [1] A. Fujishima, K. Honda, Nature 238, (1972) 37.
    [2] A. J. Bard, M. A. Fox, Acc. Chem. Res. 28, (1995) 141.
    [3] O. Khaselev, J. A. Turner, Science 280, (1998) 425.
    [4] M .Grätzel, Nature, 414, (2001) 338.
    [5] H. Katagiri, Thin Solid Films 426, (2005) 480.
    [6] H .Katagiri,.; K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano,T. Ito, T. Motohiro, Appl. Phys. Express. 1, (2008) 041201.
    [7] J. J Scragg,P.J. Dale, L.M. Peter, Electrochem. Commun. 10, (2008) 639.
    [8] D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen,. Appl. Phys. Express 3, (2010) 101202.
    [9] G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, K. Domen, Chem. Phys. Lett. 501, (2011) 619.
    [10] B. Marsen, B.Cole, E. L. Miller, Sol. Energy Mater. Sol. Cells 92, (2008) 1054.
    [11] S. Ikeda, R. Kamai, T. Yagi, M. Matsumura, J. Electrochem. Soc. 157. (2010) B99.
    [12] G. Zoppi, I. Forbes, R. W. Miles, P. J. Dale, J. J. Scragg, L. M. Peter, Prog. Photovolt. Res. Appl.,17, (2009) 315.
    [13] G. S. Babu, Y. B. Kishore Kumar, P. U. Bhaskar, S. R. Vanjari , Sol. Energy Mater. Sol. Cells,94, (2010) 221.
    [14] A. Redinger and S. Siebentritt, Appl. Phys. Lett. 97, (2010) 092111.
    [15] R. A. Wibowo, E. S. Lee, B. Munir, and K. H. Kim, Phys. stat. sol. (a) 204, (2007) 373.
    [16] L. Sun , J. He, H. Kong, F. Yue, P. Yang, J. Chu., Sol. Energy Mater. Sol. Cells 95, (2011) 2907.
    [17] M. G. Panthani, V. Akhavan, B. Goodfellow, J.P. Schmidtke, L. Dunn, A.
    Dodabalapur, P.F. Barbara, B.A. Korgel, J. Am. Chem. Soc., 130, (2008) 16770.
    [18] M.E. Norako, M.A. Franzman, R.L. Brutchey, Chem. Mater. 21, (2009) 4299.
    [19] D.C. Pan, L.J. An, Z.M. Sun, W. Hou, Y. Yang, Z.Z. Yang, Y.F. Lu, J. Am. Chem. Soc. 130, (2008) 5620.
    [20] W.M. Du, X.F. Qian, J. Yin, Q. Gong, Chem Eur J. 13, (2007) 8840.
    [21] Q. Guo, G.M. Ford, H.W. Hillhouse, R. Agrawal, Nano Lett. 9, (2009) 3060.
    [22] A. Shavel, J. Arbiol, A. Cabot, J. Am. Chem. Soc. 132, (2010) 4514.
    [23] J. Tang, S. Hinds, S.O. Kelley, E.H. Sargent, Chem. Mater.2008, 20, (2008) 6906.
    [24] S.C. Riha, B.A. Parkinson, A.L. Prieto, J. Am. Chem. Soc. 131, (2009) 12054.
    [25] Q. Guo, G.M. Ford, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc. 131 , (2009) 11672.
    [26] C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, J. Am. Chem. Soc. 131. (2009) 12554.
    [27] M. Tsega and D. H. Kuo, Appl. Phys. Express 5, (2012) 091201.
    [28] K. Fujji and K. Ohkawa, Jpn. J. Appl. Phys. 44, (2005) L 909.
    [29] D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama , J. Kubota, H. Katagiri, K. Domen, Appl. Phys. Express. 3, (2010) 101202.
    [30] P. Wang, T. Minegishi, G. Ma, K. Takanabe, Y. Satou, S. Maekawa, Y. Kobori, J. Kubota, and K. Domen, J. Am. Chem. Soc. 134, (2012) 2469.
    [31] G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, K. Domen, Chem. Phys. Lett. 501, (2011) 619.
    [32] B. Parkinson, Acc. Chem. Res. 17, (1984) 431.
    [33]C. Perssona, J. Appl. Phys. 107, (2010) 053710.
    [34] Allen J. Bard, J. Phys. Chem. 86 (2), (1982) 172.
    [35] S.Y. Liu, J. K. Sheu, C. K. Tseng, J. C. Ye, K. H. Chang, M. L. Lee, and W. C. Laia, J. Electrochem. Soc. 157 (2010) B266.

    無法下載圖示 校內:2019-06-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE