簡易檢索 / 詳目顯示

研究生: 賴冠杰
Lai, Kuan-Chieh
論文名稱: 銳鈦礦二氧化鈦奈米管在鋰離子電池陽極的應用
Anatase TiO2 Nanotubes as Anodes for Lithium Ion Batteries
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 鋰離子電池二氧化鈦奈米管石墨烯負極
外文關鍵詞: Lithium ion batteries, TiO2, Nanotubes, Reduced graphene oxide, Anode
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以水熱法合成二氧化鈦奈米管,並且藉由添加氧化石墨烯(GO)與冷凍乾燥處理,得到二氧化鈦奈米管與石墨烯(f-TNT/RGO)的複合材料。藉由組成半電池進行測試,並與TNT、TNT/RGO、f-TNT比較其性能,以分析f-TNT/RGO之優勢。
    由XRD與Raman分析得知所合成的二氧化鈦晶相為銳鈦礦以及少量的TiO2-B,同時藉由Raman與FTIR分析確認GO的還原。接著由TEM與SEM圖觀察石墨烯以及冷凍乾燥對二氧化鈦奈米管的影響,分別造成團聚顆粒以及奈米管之間的分散,再藉由氮氣吸脫附曲線搭配BET分析確認冷凍乾燥可令表面積顯著增加(TNT由166增至279 m2/g,TRGO由200增至278 m2/g)。組裝半電池進行循環伏安測試分析,出現銳鈦礦與TiO2-B的氧化/還原峰,且與充放電測試一起顯示經冷凍乾燥的樣品(f-TNT與f-TNT/RGO),鋰離子主要由在1.75-1V的表面嵌入與界面儲存所貢獻。
    電池性能方面,f-TNT/RGO有最好的充放電表現,在1 C與30 C分別有239和155 mA h g-1的電容量。由阻抗分析得知f-TNT/RGO有較低之電荷傳遞阻力值,此結果肇因於(1)較高的電解液的接觸面積,(2) RGO與二氧化鈦界面的擬電容,(3) RGO提供較好的電子傳遞能力。在高速(30 C)長效穩定性測試方面,進行100圈充放電測試後,f-TNT/RGO具有100%的維持率,且在200圈後,維持率仍有94 %。圖4-14 顯示近年以二氧化鈦與碳之複合材料,其半電池在不同充放電速率下的結果,可更清楚瞭解本研究之表現。

    This study reports an anatase TiO2 nanotubes (TNT) and reduced graphene oxide (RGO) hybrid that is synthesized via an in situ hydrothermal process followed freezing dry treatment (f-TNT/RGO). The structure and performances are compared with TNT, f-TNT and TNT/RGO. The f-TNT/RGO were characterized by XRD, Raman, FTIR, TEM, SEM, BET and TGA, indicating the coexistence of anatase and minor TiO2-B with the reduction of GO. The structure and anchoring to RGO are confirmed, showing the vary difference between the product with/without RGO and especially freezing dry, each affects the agglomeration of particles and separation between tubes, which contribute to BET surface area. The dramatic incensement of f-TNT/RGO (278 m2g-1) comes from the pores in the network of tubes. The discharge curve and broad feature of CV below 1.7 V display the surface and interfacial Li+ storage from TiO2 with high surface area after freezing dry. The f-TNT/RGO exhibits better rate performance, 239 and 155 mA h g-1 can be obtained at 1 and 30 C. The AC impedance analysis leads to the lower charge transfer resistance of f-TNT/RGO, which is due to (1) high surface area which can afford more Li+ flow; (2) the interfacial Li+ storage (pseudo-capacity) and (3) a faster electron transport attributed to the RGO. 100 % retention of its value at the fifth cycle can be obtained after 100 cycles at 30 C, and retain at 94 % after another 100 cycles.

    中文摘要 I 英文摘要 II 誌謝 IX 本文目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1   1-1 前言-電池發展與介紹 1   1-2 鋰電池與鋰離子二次電池 4     1-2.1 裝置構造 5     1-2.2 工作原理 5   1-3 電解質 7     1-3.1 液態有機電解質 7     1-3.2 固態高分子電解質 9     1-3.3 膠態高分子電解質 9   1-4 電極材料 11     1-4.1 正極材料 11     1-4.2 負極材料 13   1-5 研究動機與目的 19 第二章 理論說明與文獻回顧 21   2-1 二氧化鈦負極材料介紹 21     2-1.1 二氧化鈦介紹 21     2-1.2 銳鈦礦型二氧化鈦的嵌鋰機制 23   2-2 二氧化鈦奈米管 25     2-2.1 二氧化鈦奈米管合成方法 26     2-2.2 水熱法合成機制 28   2-3 二氧化鈦負極材料改質 29 第三章 實驗方法與儀器原理介紹 32   3-1 實驗藥品 32   3-2 實驗儀器設備 33   3-3 樣品製備 34     3-3.1 二氧化鈦奈米管 34     3-3.2 二氧化鈦奈米管與石墨烯複合材料 35     3-3.3 冷凍乾燥 35   3-4 實驗分析儀器與裝置分析儀器原理簡介 37     3-4.1 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 37     3-4.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 38     3-4.3 物理吸附分析 (Brunauer-Emmett-Teller, BET) 41     3-4.4 X光繞射分析(Xray Diffraction, XRD) 43     3-4.5 拉曼光譜分析(Raman Spectrum) 45     3-4.6 傅立葉轉換紅外線光譜(Fourier Transform Infrared Spectroscopy, FTIR) 47   3-5 電化學測試 49     3-5.1 電極製作 49     3-5.2 鈕扣型電池(coin-cell)組裝 49     3-5.3 循環伏安法(cyclic voltammetry, CV) 50     3-5.4 半電池阻力測試 50   3-6 半電池性能測試 51     3-6.1 充放電測試 51     3-6.2 長效性測試 51   3-7 實驗流程 52 第四章 結果與討論 53   4-1 二氧化鈦奈米管物理分析與鑑定 53     4-1.1 XRD與Raman分析 53     4-1.2 FTIR分析 58     4-1.3 TEM與SEM分析 59     4-1.4 氮氣吸脫附結果分析 65     4-1.5 TGA分析 67   4-2 半電池電化學測試 69   4-3 電池性能測試 70     4-3.1 充放電測試 70     4-3.2 界面阻力測試 74     4-3.3 長效測試 75     4-3.4 文獻比較 76 第五章 結論與建議 78 參考文獻 79

    [1] B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, and F. Nie, "Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes," Sci Rep, vol. 4, p. 3729, 2014.
    [2] R. Mo, Z. Lei, K. Sun, and D. Rooney, "Facile synthesis of anatase TiO(2) quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries," Adv Mater, vol. 26, pp. 2084-8, Apr 2 2014.
    [3] V. Etacheri, J. E. Yourey, and B. M. Bartlett, "Chemically Bonded TiO2–Bronze Nanosheet/Reduced Graphene Oxide Hybrid for High-Power Lithium Ion Batteries," ACS Nano, vol. 8, pp. 1491-1499, 2014/02/25 2014.
    [4] Y. Li, Z. Wang, and X.-J. Lv, "N-doped TiO2 nanotubes/N-doped graphene nanosheets composites as high performance anode materials in lithium-ion battery," Journal of Materials Chemistry A, vol. 2, pp. 15473-15479, 2014.
    [5] B. Qiu, M. Xing, and J. Zhang, "Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries," J Am Chem Soc, vol. 136, pp. 5852-5, Apr 23 2014.
    [6] J. Wang, L. Shen, P. Nie, G. Xu, B. Ding, S. Fang, et al., "Synthesis of hydrogenated TiO2–reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries," Journal of Materials Chemistry A, vol. 2, p. 9150, 2014.
    [7] Y. Yang, X. Ji, M. Jing, H. Hou, Y. Zhu, L. Fang, et al., "Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries," Journal of Materials Chemistry A, vol. 3, pp. 5648-5655, 2015.
    [8] O. K. Park, Y. Cho, S. Lee, H.-C. Yoo, H.-K. Song, and J. Cho, "Who will drive electric vehicles, olivine or spinel?," Energy & Environmental Science, vol. 4, pp. 1621-1633, 2011.
    [9] V. Aravindan, Y.-S. Lee, R. Yazami, and S. Madhavi, "TiO2 polymorphs in ‘rocking-chair’ Li-ion batteries," Materials Today, 2015.
    [10] Z. Chen, I. Belharouak, Y. K. Sun, and K. Amine, "Titanium-Based Anode Materials for Safe Lithium-Ion Batteries," Advanced Functional Materials, vol. 23, pp. 959-969, 2013.
    [11] J. Wang, J. Polleux, J. Lim, and B. Dunn, "Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles," The Journal of Physical Chemistry C, vol. 111, pp. 14925-14931, 2007/10/01 2007.
    [12] J. W. Kang, D. H. Kim, V. Mathew, J. S. Lim, J. H. Gim, and J. Kim, "Particle Size Effect of Anatase TiO[sub 2] Nanocrystals for Lithium-Ion Batteries," Journal of The Electrochemical Society, vol. 158, p. A59, 2011.
    [13] P. Roy and S. K. Srivastava, "Nanostructured anode materials for lithium ion batteries," J. Mater. Chem. A, vol. 3, pp. 2454-2484, 2015.
    [14] K. Shin, H. J. Kim, J.-M. Choi, Y.-M. Choi, M. S. Song, and J. H. Park, "Controlled synthesis of skein shaped TiO2-B nanotube cluster particles with outstanding rate capability," Chemical Communications, vol. 49, pp. 2326-2328, 2013.
    [15] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, et al., "Improved Synthesis of Graphene Oxide," ACS Nano, vol. 4, pp. 4806-4814, 2010/08/24 2010.
    [16] 李文雄, "鋰電池E新世代的能源," 科學發展, vol. 362, 2003.
    [17] 黃可龍, 王兆翔, and 劉素琴, 鋰離子電池原理與技術 Lithium ion batteries: principles and key technologies. 台灣: 五南圖書出版股份有限公司, 2010.
    [18] K. Kanamura, "Problems and Expectancy in Lithium Battery Technologies," in Lithium Batteries, ed: John Wiley & Sons, Inc., 2013, pp. 107-125.
    [19] J. Hajek, French Patent, 1949.
    [20] M. B. Armand, Materials for Advanced Batteries. New York: Plenum Press, 1980.
    [21] S. Basu, USA Patent, 1983.
    [22] T. Ohzuku and A. Ueda, "Solid-state redox reactions of LiCoO2 (R̄3m) for 4 volt secondary lithium cells," journal of the Electrochemical Society, vol. 141, pp. 2972–2977, 1994.
    [23] D. Rahner, S. Machill, H. Schlorb, K. Siury, M. Klob, and W. Plieth, "Intercalation materials for lithium rechargeable batteries," Solid State Ionics, vol. 86-88, pp. 891-896, 1996.
    [24] J. O. Besenhard, M. Hess, and P. Komeda, "Dimensionally stable Li-alloy electrodes for secondary batteries," Solid State Ionics vol. 40/41 pp. 525-529, 1990.
    [25] G. T. K. Fey, W. Li, and J. R. Dahn, "LiNiVO4: A 4.8 Volt Electrode Material for Lithium Cells," Journal of The Electrochemical Society, vol. 141, pp. 2279-2282, 1995.
    [26] T. Sasaki, K. Ezawa, S. Harada, Y. Fukasawa, T. Kanai, A. Ikeda, et al., "Lithium ion batteries," Citi Research, 2012.
    [27] W. H. Meyer, "Polymer Electrolytes for Lithium-Ion Batteries," Advanced Materials, vol. 10, pp. 439–448, 1998.
    [28] G. Feuillade and P. Perche, "Ion-conductive macromolecular gels and membranes for solid lithium cells," Journal of Applied Electrochemistry, vol. 5, pp. 63-69, 1975.
    [29] Y. Ito, K. Kanehori, K. Miyauchi, and T. Kudo, "Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly(ethylene glycol)," Journal of Materials Science, vol. 22, pp. 1845-1849, 1987.
    [30] A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, "Polymeric electrolytic cell separator membrane," US Patent, 1995.
    [31] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries," Journal of Electrochemical Society, vol. 144, pp. 1188-1194, 1997.
    [32] J. Wen, Y. Yu, and C. Chen, "A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions," Materials Express, vol. 2, pp. 197-212, 2012.
    [33] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, "Review on recent progress of nanostructured anode materials for Li-ion batteries," Journal of Power Sources, vol. 257, pp. 421-443, 2014.
    [34] X. Su, Q. Wu, X. Zhan, J. Wu, S. Wei, and Z. Guo, "Advanced titania nanostructures and composites for lithium ion battery," Journal of Materials Science, vol. 47, pp. 2519-2534, 2011.
    [35] P. Kurzweil, "Chapter 16 - Lithium Battery Energy Storage: State of the Art Including Lithium–Air and Lithium–Sulfur Systems," in Electrochemical Energy Storage for Renewable Sources and Grid Balancing, P. T. M. Garche, Ed., ed Amsterdam: Elsevier, 2015, pp. 269-307.
    [36] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, pp. 252-264, 2015.
    [37] N. Loeffler, D. Bresser, and S. Passerini, "Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities," Johnson Matthey Technology Review, vol. 59, pp. 34-44, 2015.
    [38] L. Liu and X. Chen, "Titanium dioxide nanomaterials: self-structural modifications," Chem Rev, vol. 114, pp. 9890-918, Oct 8 2014.
    [39] E. Liu, J. Wang, C. Shi, N. Zhao, C. He, J. Li, et al., "Anomalous interfacial lithium storage in graphene/TiO2 for lithium ion batteries," ACS Appl Mater Interfaces, vol. 6, pp. 18147-51, Oct 22 2014.
    [40] V. Gentili, S. Brutti, L. J. Hardwick, A. R. Armstrong, S. Panero, and P. G. Bruce, "Lithium Insertion into Anatase Nanotubes," Chemistry of Materials, vol. 24, pp. 4468-4476, 2012.
    [41] J. Jamnik and J. Maier, "Nanocrystallinity effects in lithium battery materials Aspects of nano-ionics. Part IV," Physical Chemistry Chemical Physics, vol. 5, pp. 5215-5220, 2003.
    [42] J.-Y. Shin, D. Samuelis, and J. Maier, "Sustained Lithium-Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena," Advanced Functional Materials, vol. 21, pp. 3464-3472, 2011.
    [43] G. Zampardi, E. Ventosa, F. La Mantia, and W. Schuhmann, "In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy," Chem Commun (Camb), vol. 49, pp. 9347-9, Oct 18 2013.
    [44] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 11/07/print 1991.
    [45] J. Qu, J. E. Cloud, Y. Yang, J. Ding, and N. Yuan, "Synthesis of Nanoparticles-Deposited Double-Walled TiO2-B Nanotubes with Enhanced Performance for Lithium-Ion Batteries," ACS Applied Materials & Interfaces, vol. 6, pp. 22199-22208, 2014/12/24 2014.
    [46] X. Zhang, F. Cheng, J. Yang, and J. Chen, "LiNi0.5Mn1.5O4 Porous Nanorods as High-Rate and Long-Life Cathodes for Li-Ion Batteries," Nano Letters, vol. 13, pp. 2822-2825, 2013/06/12 2013.
    [47] P. Hoyer, "Formation of a Titanium Dioxide Nanotube Array," Langmuir, vol. 12, pp. 1411-1413, 1996/01/01 1996.
    [48] S. I. Matsushita, T. Miwa, D. A. Tryk, and A. Fujishima, "New Mesostructured Porous TiO2 Surface Prepared Using a Two-Dimensional Array-Based Template of Silica Particles," Langmuir, vol. 14, pp. 6441-6447, 1998/10/01 1998.
    [49] L. Xin, Y. Liu, B. Li, X. Zhou, H. Shen, W. Zhao, et al., "Constructing hierarchical submicrotubes from interconnected TiO2 nanocrystals for high reversible capacity and long-life lithium-ion batteries," Sci. Rep., vol. 4, 03/26/online 2014.
    [50] D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, et al., "Titanium oxide nanotube arrays prepared by anodic oxidation," Journal of Materials Research, vol. 16, pp. 3331-3334, 2001.
    [51] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, "Titania Nanotubes Prepared by Chemical Processing," Advanced Materials, vol. 11, pp. 1307-1311, 1999.
    [52] C.-C. Tsai, J.-N. Nian, and H. Teng, "Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH," Applied Surface Science, vol. 253, pp. 1898-1902, 2006.
    [53] N. Liu, X. Chen, J. Zhang, and J. W. Schwank, "A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications," Catalysis Today, vol. 225, pp. 34-51, 2014.
    [54] "<Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments.pdf>."
    [55] J.-Y. Liao, D. Higgins, G. Lui, V. Chabot, X. Xiao, and Z. Chen, "Multifunctional TiO2–C/MnO2 Core–Double-Shell Nanowire Arrays as High-Performance 3D Electrodes for Lithium Ion Batteries," Nano Letters, vol. 13, pp. 5467-5473, 2013/11/13 2013.
    [56] P. Balaya, H. Li, L. Kienle, and J. Maier, "Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity," Advanced Functional Materials, vol. 13, pp. 621-625, 2003.
    [57] H. Uchiyama, E. Hosono, H. Zhou, and H. Imai, "Lithium insertion into nanometer-sized rutile-type TixSn1 − xO2 solid solutions," Solid State Ionics, vol. 180, pp. 956-960, 6/25/ 2009.
    [58] D. Yan, Y. Bai, C. Yu, X. Li, and W. Zhang, "A novel pineapple-structured Si/TiO2 composite as anode material for lithium ion batteries," Journal of Alloys and Compounds, vol. 609, pp. 86-92, 10/5/ 2014.
    [59] J. Xu, Y. Wang, Z. Li, and W. F. Zhang, "Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries," Journal of Power Sources, vol. 175, pp. 903-908, 1/10/ 2008.
    [60] K. S. Han, J. W. Lee, Y. M. Kang, J. Y. Lee, and J. K. Kang, "Nature of Atomic and Molecular Nitrogen Configurations in TiO2−xNx Nanotubes and Tailored Energy-Storage Performance on Selective Doping of Atomic N States," Small, vol. 4, pp. 1682-1686, 2008.
    [61] M. Fehse, S. Cavaliere, P. E. Lippens, I. Savych, A. Iadecola, L. Monconduit, et al., "Nb-Doped TiO2 Nanofibers for Lithium Ion Batteries," The Journal of Physical Chemistry C, vol. 117, pp. 13827-13835, 2013/07/11 2013.
    [62] H. Li and H. Zhou, "Enhancing the performances of Li-ion batteries by carbon-coating: present and future," Chemical Communications, vol. 48, pp. 1201-1217, 2012.
    [63] C. Jiang and J. Zhang, "Nanoengineering Titania for High Rate Lithium Storage: A Review," Journal of Materials Science & Technology, vol. 29, pp. 97-122, 2013.
    [64] N. Takami, Y. Harada, T. Iwasaki, K. Hoshina, and Y. Yoshida, "Micro-size spherical TiO2(B) secondary particles as anode materials for high-power and long-life lithium-ion batteries," Journal of Power Sources, vol. 273, pp. 923-930, 1/1/ 2015.
    [65] 張福榮 and 張立, "場發射穿透式電子顯微鏡," 科儀新知, vol. 16, p. 4, 1995.
    [66] A. Khursheed, Scanning Electron Microscope Optics and Spectrometer. Singapore: World Scientific Publishing Company, 2010.
    [67] S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of Gases in Multimolecular Layers," Journal of the American Chemical Society, vol. 60, pp. 309-319, 1938/02/01 1938.
    [68] S. R. S. B. D. Cullity, "Elements of x-ray diffraction 3rd Ed," Prentice Hall, 2001.
    [69] C. G. Barlowz, "Reaction of Water with Hexafluorophosphates and with Li Bis(perfluoroethylsulfonyl)imide Salt," Electrochemical and Solid-State Letters, vol. 2, pp. 362-364, 1999.
    [70] R. Baddour-Hadjean and J.-P. Pereira-Ramos, "Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries," Chemical Reviews, vol. 110, pp. 1278-1319, 2010/03/10 2010.
    [71] P. Acevedo-Peña, M. Haro, M. E. Rincón, J. Bisquert, and G. Garcia-Belmonte, "Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes," Journal of Power Sources, vol. 268, pp. 397-403, 12/5/ 2014.
    [72] S. Pei and H.-M. Cheng, "The reduction of graphene oxide," Carbon, vol. 50, pp. 3210-3228, 2012.
    [73] T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, and H. Teng, "Graphite Oxide as a Photocatalyst for Hydrogen Production from Water," Advanced Functional Materials, vol. 20, pp. 2255-2262, 2010.
    [74] W. Wang, Q. Sa, J. Chen, Y. Wang, H. Jung, and Y. Yin, "Porous TiO2/C Nanocomposite Shells As a High-Performance Anode Material for Lithium-Ion Batteries," ACS Applied Materials & Interfaces, vol. 5, pp. 6478-6483, 2013/07/24 2013.
    [75] M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar, and M. Graetzel, "Pseudocapacitive Lithium Storage in TiO2(B)," Chemistry of Materials, vol. 17, pp. 1248-1255, 2005/03/01 2005.
    [76] T. Lan, H. Qiu, F. Xie, J. Yang, and M. Wei, "Rutile TiO2 mesocrystals/reduced graphene oxide with high-rate and long-term performance for lithium-ion batteries," Sci Rep, vol. 5, p. 8498, 2015.
    [77] M. Zhen, S. Guo, G. Gao, Z. Zhou, and L. Liu, "TiO2-B nanorods on reduced graphene oxide as anode materials for Li ion batteries," Chemical Communications, vol. 51, pp. 507-510, 2015.

    無法下載圖示 校內:2017-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE