簡易檢索 / 詳目顯示

研究生: 鍾侑虔
Chung, Yu-Chien
論文名稱: 低熱膨脹係數之正型感光性聚苯噁唑合成與性質之研究
Synthesis and Properties of Positive Photosensitive Polybenzoxazole with Low CTE
指導教授: 許聯崇
Hsu, Lien-chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 聚苯噁唑低熱膨脹係數DNQ-5微影製程
外文關鍵詞: Polybenzoxazole (PBO), Low CTE, Positive-type photosensitive, DNQ-5, Microlithography
相關次數: 點閱:94下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般正型感光性聚苯噁唑 (Polybenzoxazole;PBO) 聚合物是藉由Diazonaphthoquinone (DNQ) 改質之聚羥醯胺 (Polyhydroxyamide;PHA) 所組成,但普遍具有較高的熱膨脹係數,在半導體元件製作上,會造成光阻劑與基板的熱膨脹係數差異過大,而造成不匹配(mismatch) 現象,再經過高溫熱處理後,容易使表面形成翹曲或是脫裂。因此,本研究將透過導入直鏈且剛硬的單體,來降低熱膨脹係數,提升機械強度,並且以 DNQ 改質,配製出一具有低熱膨脹係數且正型感光性光阻劑系統。
    本研究合成方法採低溫聚合反應,藉由2,2-bis(3-amino-4-hydroxy phenol)hexafiouoropropane (BisAPAF)、isophthaloyl chloride (IC) 和Terephthaloyl chloride (TC)三種單體共聚形成聚苯噁唑(Polybenzoxazole;PBO) 之前驅物聚羥醯胺 (PHA),將其於350 ℃ 高溫環化後可形成聚苯噁唑 (PBO) 作為 IC 晶片保護膜。
    本實驗藉由改變 IC 及 TC單體的合成比例來降低高分子的熱膨脹係數 (CTE),再與 BisAPAF 單體反應,所得到的PHA經高溫環化 (curing) 反應後可得到熱膨脹係數小於30 ppm/℃ 的聚苯噁唑(Polybenzoxazole;PBO)。由熱機械分析 (TMA) 可得知 CTE 隨著 TC單體添加量增加而下降,但透光度在紫外-可見光光譜分析可知PHA 的穿透度隨 TC 單體添加量增加而降低。
    利用聚羥醯胺與 1,2-naphthoquinonediazide-5-sulfonyl chloride (DNQ-5)感光物質進行反應,藉由部份 OH 基被保護之作用下來抑制在鹼性水溶液中的溶解速率。此正型感光材料在 2.38 wt% 四甲基氫氧化銨 (TMAH) 的顯影液中,其未曝光區的溶解速率與已曝光區相比有明顯地降低,故此感光材料具顯著的低未曝光部份的膜損失 (dark film loss) 而可形成一良好的光阻劑。
    再利用部份 OH 基被保護的聚羥醯胺,添加感光材料 PIC-3 做為溶解抑制劑所製成的感光材料,可以製成高解析度、低未曝光膜損失的正型鹼性水溶液顯影的耐高溫感光高分子材料。在 2.38 wt% 四甲基氫氧化銨 (TMAH) 的顯影液中測得感光度為 332 mJ/cm2,對比值達 5.3,未曝光膜損失為 2 %。顯影後的聚羥醯胺圖案在 350 ℃ 下環化處理三小時後即可轉化為聚苯噁唑 (PBO)。以光學顯微鏡 (OM) 和掃瞄式電子顯微鏡 (SEM) 觀察顯影後的圖案,解析度可達 5 μm。證實本研究所製備的正型光阻材料可應用於微影製程,並且擁有低熱膨脹係數的性質。

    Five different ratios of Polybenzoxazole (PBO) precursors poly (hydroxy amide) (PHA) was synthesized by 2,2-Bis(1,3-amino-4-hydroxyphenyl)hexafluoropropane (BisAPAF), Terephthaloyl chloride (TC) and Isophthaloyl chloride (IC). When subjected to thermal cyclization, PHA can convert to PBO film. Both PHAs and PBOs were measured by FT-IR, TGA, TMA, and other method. The inherent viscosities of PHAs were in the range of 0.4~0.54 dL/g. After curing, these polybenzoxazoles (PBOs) showed CTE and Tg in the range of 26~32 ppm/°C and 321~338 °C, respectively. The polybenzoxazoles (PBOs) also showed good thermal stability, with 5-% weight loss temperature being recorded above 500 °C in air atmosphere. We also use 1,2-naphthoquinonediazide-5-sulfonyl chloride (DNQ-5), which caused some phenol hydroxyl groups of PHA to be protected, and 2,3,4-tris(1-oxo-2-diazonaphthoquinone-5-sulfonyloxy)-benzophenone (PIC-3) as a dissolution inhibitor. The PSPBO consisting of DNQ capped PHA, PIC-3, exhibited a sensitivity of 332 mJ/cm2, a contrast of 5.3 and a dark film loss of 2-% developed in 2.38 wt% Tetramethylammonium hydroxide. A clear positive image of the PBO pattern was obtained after curing at 350 °C with 5 μm resolution. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the resulting patterns.

    摘要 I Extended Abstract III 致謝 XII 總目錄 XIII 圖目錄 XVIII 表目錄 XXI Scheme 目錄 XXII 第一章 緒論 1 1-1前言 1 1-2研究動機與方法 5 第二章 文獻回顧與原理 7 2-1聚苯噁唑 (Polybenzoxazole;PBO) 的發展及應用 7 2-1-1耐高溫高分子之發展與應用 7 2-1-2聚苯噁唑之發展 9 2-1-3感光聚苯噁唑 (Photosensitive Polybenzoxazole) 之發展 12 2-1-4感光聚苯噁唑之應用 13 2-2高分子的熱膨脹係數 (Coefficient of thermal expansion;CTE) 18 2-3微影成像 (Microlithography) 技術及原理[51-53] 19 2-3-1 表面清洗 20 2-3-2 晶圓預處理 22 2-3-3 光阻塗佈 23 2-3-4 軟烤 24 2-3-5 曝光 25 2-3-6 光源 27 2-3-7 曝後烤 27 2-3-8 顯影 28 2-3-9 硬烤 28 2-3-10 蝕刻 29 2-3-11 光阻剝除 30 2-4光阻劑 31 2-4-1 UV交聯型負型光阻劑 31 2-4-2 溶解抑制型正型光阻劑 32 2-4-3 化學增幅型光阻劑 34 2-5光阻特性 36 2-5-1 特性曲線(Characteristic curve) 36 2-5-2 感度(Sensitivity) 37 2-5-3 對比(Contrast) 37 2-5-4 解析度(Resolution) 38 第三章 實驗步驟 39 3-1實驗藥品與儀器 39 3-1-1 實驗用藥品 39 3-1-2 實驗儀器 40 3-2實驗步驟 42 3-2-1 聚苯噁唑前驅物-聚羥醯胺之合成 42 3-2-2 感光性聚苯噁唑的合成 45 3-2-3 聚苯噁唑薄膜的製備 48 3-3結構鑑定與分析 50 3-3-1 紅外線吸收光譜分析 (FT-IR) 50 3-3-2 核磁共振光譜分析 (1H-NMR) 50 3-3-3 固有黏度量測 (Inherent viscosity) 51 3-3-4 凝膠滲透層析儀測定 (GPC) 52 3-3-5 微差掃描熱分析 (DSC) 52 3-3-6 紫外-可見光光譜分析 (UV-vis) 53 3-3-7 熱重分析 (TGA) 53 3-3-8 熱機械分析 (TMA) 54 3-3-9 吸濕性測試 54 3-3-10 溶解度測試 54 3-4微影製程 55 3-4-1 矽晶圓表面處理 55 3-4-2 配製光阻劑 55 3-4-3 旋轉塗佈 55 3-4-4 軟烤 56 3-4-5 曝光 56 3-4-6 顯影 56 3-4-7 溶解速率的計算 56 3-4-8 預烤溫度與時間之選擇 57 3-4-9 特性曲線的製作 57 3-4-10 Dark film loss量測 58 3-4-11 高溫環化 58 3-4-12 圖案的觀察 58 第四章 結果與討論 59 4-1聚苯噁唑 (PBO) 及前驅物聚羥醯胺 (PHA) 之合成與性質鑑定 59 4-1-1 聚苯噁唑 (PBO) 及前驅物聚羥醯胺 (PHA) 之合成 59 4-1-2 聚羥醯胺 (PHA) 之性質鑑定 60 4-1-3 聚苯噁唑 (PBO) 之性質鑑定 65 4-2聚苯噁唑 (PBO) 薄膜熱性質分析 68 4-3以感光基(DNQ-5)保護聚羥醯胺(PHA)之合成與性質鑑定 73 4-3-1 DNQ保護聚羥醯胺(PHA)之合成 74 4-3-2 DNQ保護聚羥醯胺(PHA)之性質鑑定 74 4-4 DNQ-5保護聚羥醯胺(PHA)之微影製程 78 4-4-1 感光基對溶解速率的影響 78 4-4-2 膜厚與旋塗速率之關係 82 4-4-3 軟烤溫度的選擇 83 4-4-4 Dark film loss 的量測 84 4-4-5 特性曲線的製作 84 4-4-6 SEM與OM圖形觀察 86 第五章 結論 91 參考文獻 92

    [1] M.L. Minges, Electronic materials handbook: packaging, Asm International (1989).
    [2] M.E. Mills, P. Townsend, D. Castillo, S. Martin, A. Achen, Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material, Microelectronic Engineering, 33, p327-334 (1997).
    [3] P. Ganrou, W.B. Rogers, D.M. Scheck, A.J. Strandjord, Y. Ida, K. Ohba, Stress-buffer and passivation processes for Si and GaAs IC's and passive components using photosensitive BCB: process technology and reliability data, IEEE transactions on advanced packaging, 22, p487-498 (1999).
    [4] G. Maier, S. Banerjee, J. Haußmann, R. Sezi, High-temperature polymers for advanced microelectronics, High Performance Polymers, 13, p107-115 (2001).
    [5] S.L.-C. Hsu, W.-C. Chen, A novel positive photosensitive polybenzoxazole precursor for microelectronic applications, Polymer, 43, p6743-6750 (2002).
    [6] T. Hirano, K. Yamamoto, K. Imamura, Application for WLP at positive working photosensitive polybenzoxazole, University/Government/Industry Microelectronics Symposium, 2003. Proceedings of the 15th Biennial, IEEE, p246-249 (2003).
    [7] H.-s. Noh, K.-s. Moon, A. Cannon, P.J. Hesketh, C. Wong, Wafer bonding using microwave heating of parylene intermediate layers, Journal of micromechanics and microengineering, 14 (2004).
    [8] J. Yota, Interlevel dielectric processes using PECVD silicon nitride, polyimide, and polybenzoxazole for GaAs HBT technology, Journal of The Electrochemical Society, 156, p173179 (2009).
    [9] M. Töpper, T. Fischer, T. Baumgartner, H. Reichl, A comparison of thin film polymers for wafer level packaging, 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), IEEE, p769-776, 2010.
    [10] B. Wunderle, E. Dermitzaki, O. Hölck, J. Bauer, H. Walter, Q. Shaik, K. Rätzke, F. Faupel, B. Michel, H. Reichl, Molecular dynamics approach to structure–property correlation in epoxy resins for thermo-mechanical lifetime modeling, Microelectronics Reliability, 50 (2010).
    [11] K.-i. Fukukawa, M. Ueda, Recent progress of photosensitive polyimides, POLYMER JOURNAL-TOKYO-, 40 (2008).
    [12] M. Hasegawa, Y. Tsujimura, K. Koseki, T. Miyazaki, Poly (ester imide) s possessing low CTE and low water absorption (II). Effect of substituents, Polymer journal, 40 (2008).
    [13] J. Ishii, T. Akamatsu, Organo-soluble low CTE polyimides and their applications to photosensitive cover layer materials in flexible printed circuit boards, High Performance Polymers, 21 (2009).
    [14] N. Sensui, J. Ishii, A. Takata, Y. Oami, M. Hasegawa, R. Yokota, Ultra-low CTE and improved toughness of PMDA/PDA polyimide-based molecular composites containing asymmetric BPDA-type polyimides, High Performance Polymers, 21 (2009).
    [15] H. Ahne, E. Kuhn, R. Rubner, Heat resistant positive resists containing polyoxazoles, Google Patents, (1982).
    [16]Wikipedia, https://en.wikipedia.org/wiki/Thermal_expansion, (2016).
    [17] D.S. Dunn, D.J. McClure, Infrared reflection–absorption spectroscopy of surface modified polyester films, Journal of Vacuum Science & Technology A, 5 (1987).
    [18] F. Yost, Voiding due to thermal stress in narrow conductor lines, Scripta metallurgica, 23 (1989).
    [19] 洪木清, 低介電常數有機光阻之應用, 第11卷, 第7期, 第174頁, (2005).
    [20] C.B. Keith, D.C. Donald, M.R. Ivan, Polybenzoxazoles, Google Patents, 1959.
    [21] E.W. Choe, S.N. Kim, Synthesis, spinning, and fiber mechanical properties of poly (p-phenylenebenzobisoxazole), Macromolecules, 14 (1981).
    [22] J. Newell, D. Rogers, D. Edie, C. Fain, Direct carbonization of PBO fiber, Carbon, 32 (1994).
    [23] T. Kitagawa, H. Murase, K. Yabuki, Morphological study on poly‐p‐phenylenebenzobisoxazole (PBO) fiber, Journal of Polymer Science Part B: Polymer Physics, 36 (1998).
    [24] 日本東洋紡公司, www.toyobo.co.jp, (1999).
    [25] J.F. Wolfe, F. Arnold, Rigid-rod polymers. 1. Synthesis and thermal properties of para-aromatic polymers with 2, 6-benzobisoxazole units in the main chain, Macromolecules, 14 (1981).
    [26] J.F. Wolfe, B.H. Loo, F. Arnold, Rigid-rod polymers. 2. Synthesis and thermal properties of para-aromatic polymers with 2, 6-benzobisthiazole units in the main chain, Macromolecules, 14 (1981).
    [27] C.-s. Hong, M. Jikei, M.-a. Kakimoto, Synthesis and Characterization of Hyperbranched Polybenzoxazoles, Journal of Photopolymer Science and Technology, 15 (2002).
    [28] G. Yang, Z. Xue, K. Zhang, X. Liu, X. Li, Q. Zhuang, Z. Han, Synthesis and Characterization of Polybenzobisoxazole Polymers Containing Trifluoromethyl or Sulfone Groups, Journal of Macromolecular Science, Part B, 53 (2014).
    [29] L.-S. Tan, M. Houtz, J. Lavoie, D. Pedrick, E. Jones, M. Unroe, Polymer degradation studies of fluorinated polymers. Thermal behavior of 6 F-PBO, Meeting of the Division of Polymer Chemistry, p437-438, 1994.
    [30] W. Joseph, J. Abed, R. Mercier, J.E. Mcgrath, Synthesis and characterization of fluorinated polybenzoxazoles via solution cyclization techniques, Polymer, 35 (1994).
    [31] T. Yamaoka, N. Nakajima, K.i. Koseki, Y. Maruyama, A study of novel heat‐resistant polymers: Preparation of photosensitive fluorinated polybenzoxazole precursors and physical properties of polybenzoxazoles derived from the precursors, Journal of Polymer Science Part A: Polymer Chemistry, 28 (1990).
    [32] 劉瑞祥, 感光性高分子, 復文書局, (1987).
    [33] R.E. Kerwin, M.R. Goldrick, Thermally stable photoresist polymer, Polymer Engineering & Science, 11 (1971).
    [34] R. Rubner, H. Ahne, E. Kuhn, G. Kolodziej, PHOTO-POLYMER-DIRECT WAY TO POLYIMIDE PATTERNS, Photographic Science and Engineering, 23 (1979).
    [35] R. Rubner, Photoreactive polymers for electronics, Advanced Materials, 2 (1990).
    [36] R. Rubner, Innovation via Photosensitive Polyimide and Poly (benzoxazole) Precursors-a Review by Inventor, Journal of Photopolymer Science and Technology, 17 (2004).
    [37] T. Ogura, M. Ueda, Photosensitive polybenzoxazole based on a poly (o‐hydroxy amide), a dissolution inhibitor, and a photoacid generator, Journal of Polymer Science Part A: Polymer Chemistry, 45 (2007).
    [38] K. Mizoguchi, T. Higashihara, M. Ueda, An alkaline-developable, negative-working photosensitive polybenzoxazole based on poly (o-hydroxyamide), a vinyl sulfone-type cross-linker, and a novel photobase generator, Macromolecules, 42 (2009).
    [39] A.A. Naiini, D.B. Powell, D.W. Racicot, I.y. Rushkin, W.D. Weber, Positive photosensitive polybenzoxazole precursor compositions, Google Patents, 2010.
    [40] T. Ogura, T. Higashihara, M. Ueda, Pattern formation of polyimide by using photosensitive polybenzoxazole as a top layer, European Polymer Journal, 46 (2010).
    [41] T. Higashihara, Y. Shibasaki, M. Ueda, Development of Thermally Stable and Photosensitive Polymers, Journal of Photopolymer Science and Technology, 25 (2012).
    [42] S.L.-C. Hsu, W.-C. Chen, P.-I. Lee, A novel positive photosensitive polybenzoxazole based on a tetrahydropyranyl (THP) protected polyhydroxyamide, Polymer Bulletin, 50 (2003).
    [43] 金進興, 材料與社會, 第6卷, 第5期, 第80頁(1991).
    [44] S. Sasaki, S. Nishi, M. Ghosh, K. Mittal, Polyimides: fundamentals and applications, Marcel Dekker, New York, (1996).
    [45] http://www.electroiq.com
    [46] http://www.asahi-kasei.co.jp
    [47] S.L.-C. Hsu, K.-C. Chang, Synthesis and properties of polybenzoxazole–clay nanocomposites, Polymer, 43 (2002).
    [48] S.L.C. Hsu, C.Y. Lin, S.W. Chuang, Positive‐working aqueous base developable photosensitive polybenzoxazole precursor/organoclay nanocomposites, Journal of applied polymer science, 97 (2005).
    [49] 邱國展、莊貴貽、曾峰柏、徐銘蔚, 具高耐熱與低膨脹係數之環保材料開發與研究, 電路板會刊, (2014).
    [50] M. Hasegawa, J. Kobayashi, L. Vladimirov, Solution-processable low-CTE polybenzoxazoles, Journal of Photopolymer Science and Technology, 17 (2004).
    [51] 蕭宏, 半導體製程技術導論, 歐亞書局有限公司, (2001).
    [52] 龍文安, 積體電路微影製程, 高立出版社, (1998).
    [53] 莊達人, VLSI 製造技術, 高立出版社, (1996).
    [54] M. Quirk, J. Serda, Semiconductor manufacturing technology, Prentice Hall Upper Saddle River, NJ2001.
    [55] 李晏成, 化工技術, 第14卷, 第9期, 第134頁, (2006).
    [56] 楊金成, 電子月刊, 第14卷, 第4期, 第116頁, (2008).
    [57] H. Ito, C.G. Willson, Applications of photoinitiators to the design of resists for semiconductor manufacturing, (1984).
    [58] R.V. Tanikella, T. Sung, S.A. Bidstrup-Allen, P.A. Kohl, Rapid curing of positive tone photosensitive polybenzoxazole based dielectric resin by variable frequency microwave processing, IEEE Transactions on Components and Packaging Technologies, 29 (2006).
    [59] C. Willson, L. Thompson, M. Bowden, Introduction to microlithography, ACS Symposium Series, p123-126, (1994).
    [60] C.L. Henderson, S.A. Scheer, P.C. Tsiartas, B.M. Rathsack, J.P. Sagan, R.R. Dammel, A. Erdmann, C.G. Willson, Modeling parameter extraction for DNQ-novolak thick film resists, 23rd Annual International Symposium on Microlithography, International Society for Optics and Photonics, p256-267, (1998).
    [61] H. Zhou, Y. Zou, Y. Song, Effects of diazonaphthoquinone groups on photosensitive coating, Journal of applied polymer science, 117 (2010).
    [62] 許瑋壬, 微電子用低溫環化正型感光性聚苯噁唑聚合物之研究, 成功大學材料科學及工程學系學位論文, (2011).
    [63] T. Omote, H. Mochizuki, K.i. Koseki, T. Yamaoka, Fluorine-containing photoreactive polyimide. 7. Photochemical reaction of pendant 1, 2-naphthoquinone diazide moieties in novel photoreactive polyimides, Macromolecules, 23 (1990).
    [64] 李柏毅, 正型鹼性水溶液顯影感光性聚亞醯胺材料之研究, 成功大學材料科學及工程學系學位論文, (2002).

    下載圖示 校內:2021-07-25公開
    校外:2021-07-25公開
    QR CODE