簡易檢索 / 詳目顯示

研究生: 王鴻圖
Wang, Hung-Tu
論文名稱: 加勁邊坡土體動態行為之模擬分析
The Simulation on Dynamic Behavior of a Reinforced Earth Embankment
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 132
中文關鍵詞: 二維有限差分軟體加勁邊坡土體降伏速度振動台試驗
外文關鍵詞: FLAC, Yielding Rate, Shaking Table Test, Reinforced Earth Embankment
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   採用二維有限差分軟體FLAC(Fast Largragian Analysis of Continua)模擬美國華盛頓大學Adam Perez(1999)振動台試驗加勁邊坡土體之動態行為,並使用Duncan(1980)提出的雙曲線土壤模數模型修正不同圍壓下的土壤模數。於建立數值模型時,先在底面鋪上一層厚約3公分的砂土,再鋪設底層加勁材,減低底層加勁材在底面上產生的滑動現象,進而改善數值模型。
      結果顯示,加勁材強度增加或加勁材間距減小,在動態行為後,加勁邊坡土體行為更趨向整體化,且在土體後方產生隆起;加勁邊坡的降伏速度會隨著加勁材的強度增加、加勁材的間距減小或加勁材的埋設長度增加而增加。

      The two dimensional finite difference software FLAC(Fast Largragian Analysis of Continua), is adopted to simulate the dynamic behavior of a reinforced earth embankment of “Shaking Table Test” which established by Adam Perez(1999)in University of Washington USA; the hyperbolic soil model established by Duncan and Chang is used to modify the soil modului under different confined compressions. The numerical model of the reinforced earth embankment is improved by placing a sand layer of 3 cm thickness above the last layer of reinforcement material. It may reduce the sliding effect in the last layer of reinforcement usually occurred in the field. 
      The results of study indicated that as the strength of the reinforcement increase on the spacing of the reinforcement decrease, the behavior of the embankment turn integrating as the embankment under dynamic conditions the bulge of soil may be generated at the back of the embankment. It also found that the yielding rate of the reinforced embankment increases as the strength of the reinforment on the embedded length of the embankment increases; however, the yielding are may decrease as increase of the spacing of the reinforcement.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號說明表 XIII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 1 1.3研究方法與流程 2 1.4論文內容 2 第二章 文獻回顧 5 2.1 擋土結構物介紹 5 2.2 加勁土壤原理 8 2.3 加勁邊坡穩定分析 11 2.3.1 極限平衡分析法 11 2.3.2 工作應力分析法 13 2.4 加勁土壤分析模型 14 2.4.1 分離元素模型 14 2.4.2 複合元素模型 15 2.5 數值分析法介紹 16 2.6 加勁擋土牆動態分析 20 2.6.1 擬靜態土壓力原理 20 2.6.2 地震加速度係數之選定 22 第三章 加勁邊坡數值模型之發展 24 3.1 FLAC程式介紹 24 3.2 FLAC內建材料模式 26 3.2.1 彈性材料模式 26 3.2.2 橫向等向性材料模式 26 3.2.3 莫爾庫倫材料模式 27 3.2.4 空洞模式 27 3.3 FLAC界面元素 28 3.4 FLAC內建結構元素 28 3.5 發展數值模型 30 3.5.1 模型建立 30 3.5.2 邊界條件 30 3.5.3 土壤模型 31 3.5.4 加勁材料模型 33 3.5.5 面版 36 3.5.6 平衡準則 36 3.5.7 加勁邊坡建造 37 3.6 動態分析 38 3.6.1 輸入振動 38 3.6.2 邊界設定 39 3.6.3 阻尼系統 50 3.7修正改善數值模型 52 第四章 振動台試驗與數值模擬結果 54 4.1 振動台試驗介紹 54 4.1.1 振動台試驗設備介紹 54 4.1.2 試驗過程 55 4.1.3 振動台試驗結果 59 4.2 數值分析過程 63 4.2.1 模型建立 63 4.2.2 輸入振動 64 4.2.3 阻尼系統 64 4.3 模擬結果討論 70 4.3.1 坡面變位 70 4.3.2 土體變位 79 4.4.3加速度歷時 84 4.3.4土體應力分佈 87 4.3.5降伏加速度 89 第五章 結論與建議 94 5.1結論 94 5.2建議 95 參考文獻 96 附錄A 數值模型所施加之振動力 100 附錄B各模型加速度計之加速度歷時 106 附錄C土體應力分佈圖 126 自述 132

    1 中華地工材料協會,加勁擋土結構設計及施工手冊,中華地工材料協會,(2001)。
    2 江鑑清,「疊塊式加勁擋土牆之靜動態行為分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。
    3 周南山,「地工合成物加勁牆分析設計之探討與評估」,地工技術,第43期,第32-42頁,(1993)。
    4 賴盈如,「加勁擋土牆動態反應分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。
    5 陳建吾,「加勁擋土牆動態行為之模擬」,國立成功大學土木工程研究所碩士論文,(2004)
    6 蔡浻祥,「加勁邊坡動態行為模擬之分析」,國立成功大學土木工程研究所碩士論文,(2005)
    7 Bathurst, R.J., and Koerner R.M., “Results of Class A Predictions for the RMC Reinforced Soil Wall Trials,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: Applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 127-171, (1988).
    8 Anderson, E.A. “A centrifuge modeling study of seismic response of geosynthetic-reinforced slopes,” Master of Science Thesis, University of Washington, (1997).
    9 Duncan, J.M., Byrne, P., Wong, K.S., and Mabry, P. “Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses,” Geotechnical Engineering Report, No. UCB/GT/80-01, University of California, Berkeley, (1980).
    10 Gray, D.H., and Ohashi, H., “Mechanics of Fiber Reinforcement in Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 3, pp. 335-353, (1983).
    11 Hausmann, M.R., “Strength of Reinforced Soil,” Proceeding of Eighth Australian Road Research Board Conference, Perth, Session 13, pp. 1-3, (1976)
    12 Hausmann, M.R., and Lee, K.L., “Strength Characteristics of Reinforced Soil,” Proceedings of the International Symposium on New Horizons in Construction Materials, Lehigh, Vol. 1, pp. 165-176, (1976)
    13 Hausmann, M.R., Engineering Principles of Ground Modification, McGraw-Hill, (1990).
    14 Itasca Consulting Group, Fast Lagrangian Analysis of Continua, Itasca Consulting Group, Inc.Volume I, II, III, IV, (1999).
    15 Jones, C. J.F.P., Earth Reinforcement and Soil Structures, Thomas Telford, (1997).
    16 Krizhner, F., and Rosenhouse, G., “Numerical analysis of Tunnel Dynamic Response to Earth Motions,” Tunneling and Underground Space Technology, Vol. 15, No. 3, pp. 249-258, (2000).
    17 Lade, P.V., and Lee, K.L., “Engineering Properties of Soils,” Report UCLA-ENG-7652, pp. 145, (1976).
    18 Lee, W.F., “Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls,” Ph.D. dissertation, Department of Civil and Environmental Engineering, University of Washington, (2000).
    19 McElroy, J.A. “Seismic stability of geosynthetic reinforced slopes: a shaking table study,” Master of Science of Thesis, University of Washington, (1997).
    20 Mitchell, J.K. and Villet, W.C.B., “Reinforcement of Earth Slopes and Embankments,” National Cooperative Highway Research Program Report 290, Transportation Research Board, p. 323, (1987).
    21 NCMA, “Segmental Retaining Walls – Seismic Design Manual”, 1st Edition, National Concrete Masonry Association, Bathurst, R. J., USA, (1998).
    22 Perez, A., “Seismic Response of Geosynthetic Reinforced Steep Slopes,” Master of Science Thesis, University of Washington, (1999).
    23 Rowe, R.K. and Ho, S.K., “Application of Finite Element Techniques to the Analysis of Reinforced Soil Walls,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 541-556, (1988).
    24 Rowe, R. K., and Ho, S. K., “Keynote Lecture: A Review of the Behavior of Reinforced Soil Walls,” Earth Reinforcement Practice, Proceedings of the International Symposium on Earth Reinforcement Practice, Fukuoka, H. Ochiai, S. Hayashi and J. Otani, Eds., Balkema, Rotterdam, pp. 801-830, (1993).
    25 Schlosser, F. and Long, H.T., “Recent Results in French Research on Reinforced Earth,” Journal of the Construction Division, ASCE, Vol. 100, No. CO3, pp. 223-227, (1972).
    26 Seed, H.B. and Whitman, R.V., “Design of Earth Retaining Structures for Dynamic Loads,” ASCE Specialty Conference: Lateral Stresses in the Ground and Design of Earth Retaining Structures, Ithaca, NY, pp. 103-147, (1970).
    27 Vidal, H., “La terre Armee,” Annales del’Institut Technique du Batiment et des Travaux Publics, France, Serie Materiaux 30, Supplement No.223-4(1996)
    28 Vidal, H., “The Principle of Reinforced Earth,” Highway Research Record 282, pp. 1-16, (1969).
    29 Yang, M.A. and Singh, A., “Strength and Deformation Characteristics of Reinforced Sand,” National Meeting on Water Resources Engineering, ASCE, Los Angeles, Preprint 2189, (1974).

    下載圖示 校內:2009-08-24公開
    校外:2012-08-24公開
    QR CODE