| 研究生: |
徐偉誠 Hsu, Wei-Cheng |
|---|---|
| 論文名稱: |
二氧化鈦/奈米矽/非晶矽/ITO複合膜的光電特性及其應用於低成本大面積太陽能電池的研究 A Study of Photovoltaic Properties of the TiO2/nc-Si/α-Si:H Composite Film on ITO Glass Substrate for Low Cost and Large Area Solar Cell Applications |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 二氧化鈦 、太陽能電池 |
| 外文關鍵詞: | TiO2, solar cell |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的日新月益,能源的開發已成為刻不容緩的問題,其中太陽能具有無汙染、取之不竭的特性,已成為大家最關注的能源之一。但傳統的PIN結構太陽能電池,P層對短波長光不敏感,且在p/i層接面處常有大量電子電洞對的復合情形產生,因而降低轉換效率。此外製程複雜,導致成本無法降低。本論文提出一種新的太陽能電池結構TiO2/nc-Si/α-Si/ITO/glass來克服上述的缺點,本結構利用二氧化鈦薄膜(TiO2)對UV光的吸收特性,來提高元件對太陽光的吸收頻譜範圍,並以其高能隙(Eg>3.0eV)的特性來降低電子電洞對複合的機會,再利用奈米矽微小晶粒在表面形成texture結構,此結構能使陽光在TiO2/Al及TiO2/nc-Si接面處形成散射,因而增加光子在主動層內被吸收的機率。
吾人先採用電漿助長化學氣相沉積系統(PECVD)在ITO玻璃上成長非晶矽薄膜,並在相同溫度下,以疊層技術(LBL)成長出奈米晶矽薄膜,接著再使用射頻磁控式電漿鍍膜法成長二氧化鈦薄膜,最後再用蒸著法鍍上一層鋁作為電極,如此完成整個元件的製作。
本文採用場發射掃描式電子顯微鏡(FESEM)、原子力顯微鏡(AFM)、拉曼光譜儀(Raman Spectroscopy)、歐傑電子光譜儀(AUGER)、光致螢光光譜儀(PL)、Spectra Pro500等儀器來分析各層薄膜結構及光電特性,並利用HP4145量測各層不同薄厚對電流增益、Jsc、Voc、Fill Factor、efficiency等重要參數的影響。
實驗結果發現,加入二氧化鈦的確可使電流增益從原先的3.5變成130,如再加入四層(最佳)奈米矽產生的texture接面,則可使電流增益再提升至780,如此證實了TiO2和奈米矽的作用。利用此新結構成長出的太陽電池的初步特性為Voc=260mV、Isc=2.2mA、FF=69.5%、η=4.22%。
In the traditional solar cell with PIN structures, P layer has poor short wavelength response. Besides, there are lots recombinations of electron hole pair generated at p/i interface, thus reduces the conversion efficiency. Furthermore, complicated processes are needed to prepare the PIN structures, thus raises cost. Therefore, in this thesis, we developed a new structure of TiO2/nc-Si/α-Si/ITO/glass for large area and low cost solar cell applications. TiO2 extends the solar absorption spectrum to UV range, and reduces the recombination probability of electron hole pair for its large energy gap (Eg>3.0eV). The nc-Si has nano size grain at surface, which induces a surface texture at both TiO2/nc-Si and TiO2/Al interface; consequently, scattering of injection photon happens at these textured interfaces to enhance the photon absorption in the active layer.
Firstly, use PECVD to deposit the α-Si films on ITO glass substrate and then the nc-Si films under the same temperature by layer-by-layer (LBL) method. Next, use a radio-frequency sputtering system to deposit TiO2 films, and followed by the evaporation of Al electrode. We investigated physical and photoelectric characteristics of the films by FESEM, AFM, Raman Spectroscopy, Auger, PL, Spectra Pro500, and employed HP4145 for current gain, Jsc, Voc, Fill Factor and efficiency.
Experiment results evidence the device with TiO2 raises the phto/dark current ratio from 3.5 to 130. Moreover, the added nc-Si enhances the current ratio from 130 to 780. The initial performances of the new structure solar cell are conversion efficiency =4.22%, Isc= 2.2mA, Voc= 260mV, and FF =69.5%
[1] L. Escobar-Alarcón, E. Haro-Poniatowski, M.A. Camacho-López, M. Fernández-Guasti, J. Jímenez-Jarquín and A. Sánchez-Pineda Appl. Surf. Sci. 137 (1999), p. 38
[2] B.H. Lee, Y. Jeon, K. Zawadzki, W.-J. Qi and J. Lee ,” Effect of barrier layer on the electrical and reliabilitycharacteristics of high-k gate dielectric films.“ Electron device meeting,IEEE, p.797-800 (1998)
[3] A.Fujishima,K.Honda,” Electrochemical photolysis of water at a semiconductor electrode.” Nature(London)238 July (1972) 37.
[4] 郭哲豪, 方炎坤, “二氧化鈦與奈米矽,非晶矽及氧化鎢複合膜的可見光催化特性及親水性之研究” 國立成功大學電機工程學系碩士論文,民國九十三年六月
[5] Takashi FUYUKI and Hiroyuki MATSUNAMI ,”Electronic Properties of the Interface between Si and TiO2 Deposited at Very Low Temperatures” Japanese Journal of Applied Physics Vol. 25,No.9,September (1986) pp.1288-1291
[6] Michael Gratzel and Augustin McEvoy, ”Dye sensitized nanocrystalline solar cells” Swiss Federal Office of Energy SFOE,Annual Report (2001)
[7] M. Gratzel and A.J.McEvoy ,”Principles and Applications of Dye Sensitized Nanocrystalline Solar Cells” International PVSEC(Photovoltaic Science and Engineering Conference)-14
[8] Brian O’Regan & Michael Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” NATURE Vol 353 24 October (1991)
[9] P.M. Sommeling, Martin Spath, JanKroon, Ronald Kinderman, John van Roosmalen, “Flexible Dye-Sensitized Nanocrystalline TiO2 Solar Cells” Solar Energy
[10] D.E Carlson,” Semiconductor device having a body of amorphous silicon.” U.S. Patent 4,064,521 Dec (1977)
[11] H.Melchio, in F.T.Arecchi and E.O.Schulz-Dubois, Eds. Laser Handbook, vol.1, p.725 (1972)
[12] Y.Tawada, K.Tsuge, M.Konda, H.Okamoto, and Y.Hamakawa, J.Appl. Phys., vol.53, p.5273 (1982)
[13] H. Tasaki, W.Y.Kim, M.Hallerdt, M.Konagai, and K.Takahashi, J.Appl. Phys., vol.63, p.550 (1988)
[14] Redfield D. Multiple-pass thin-film silicon solar cell. Applied Physics Letters (1974); 25: 647–648.
[15] Goetzberger A. Optical confinement in thin Si solar cells by diffuse back reflectors. Proceedings of the 15th IEEE Photovoltaic Specialists Conference, Orlando, (1981) ;867–870
[16] Yablonovitch E. Statistical ray optics. Journal of the Optical Society of America (1982); 72: 899–907.
[17] Martin A. Green “Lambertian Light Trapping in Textured
Solar Cells and Light-Emitting Diodes: Analytical Solutions”
Appl. (2002); 10:235-241
[18] David Thorp, Stuart R. Wenham, “Ray-tracing of arbitrary surface textures for light-trapping in thin silicon solar cells” Solar Energy Materials and Solar Cells 48 (1997) 295-301
[19] Pere ROCA i CABARROCAS, Anna FONTCUBERTA I MORRAL, Billel KALACHE, and Samir KASOUIT, “Microcrystalline Silicon Thin Films Grown by PECVD. Growth Mechanisms and Grain Size Control”, Solid State Phenomena Vol. 93 (2003) pp. 257-268.
[20] X. L. Jiang, Y. L. He, H. L. Zhu, “The effect of passivation of boron dopants by hydrogen in nano-crystalline and micro-crystalline silicon films”, J. Phys.: Condens. Matter 6 (1994) 713-718.
[21] 郭哲豪, 方炎坤, “二氧化鈦與奈米矽,非晶矽及氧化鎢複合膜的可見光催化特性及親水性之研究” 國立成功大學電機工程學系碩士論文,民國九十三年六月
[22] 洪志昇, 方炎坤, ”碘摻雜TPD、Alq3、CuPC及五環素有機薄膜特性之研究” 國立成功大學電機工程學系碩士論文,民國九十四年六月
[23] T. Itoh, K. Yamamoto, K. Ushikoshi, S. Nonomura, S. Nitta, ”Characterization and role of hydrogen in nc-Si:H”, Journal of Non-Crystalline Solids 266-269 (2000) 201-205.]
[24] C. Godet, N. Layadi, P. Roca i Cabarrocas, “Role of mobile hydrogen in the amorphous silicon recrystallization”, Applied Physics Letter 66 (23), 5 June (1995)
[25] P. Roca i Cabarrocas, ”Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids 266-269 (2000) 31-37.
[26] Akihisa Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasma”. Thin Solid Films 337 (1999) 1-6.
[27] O. Vetterl, P. Hapke, F. Finger, L. Houben, ”Growth of microcrystalline silicon using the layer-by-layer technique at various plasma excitation frequency”. Journal of Non-Crystalline Solids 227-230. (1998) 866-870.
[28] 林季尚, 方炎坤, “熱鎢絲化學氣相低溫沈積奈米矽晶薄膜及薄膜電晶體的研究” 國立成功大學電機工程學系碩士論文,民國九十五年六月
[29] 林秉璋, 方炎坤, “利用疊層氫原子化學回火及電漿輔助化學氣相沈積技術成長低溫奈米矽鍺薄膜之研究” 國立成功大學電機工程學系碩士論文,民國九十四年六月
[30] 溫志中,”太陽能電池極高純度多晶矽之發展現況” 工業材料 Vol.193, pp.144-152 (2003).
[31] 莊嘉琛編譯,”太陽能工程(太陽電池篇)” 全華科技圖書股份有限公司,台灣 (2002)
[32] Donald A. Neamen, “ Semiconductor Physics and Devices,”
McGraw-Hill, New York (1997).
[33] Martin A. Green, “Solar Cells Operating Principles, Technology, and System Application, ” P4-6&P85-96, University of New South Wales Press(1982)
[34] M.P Thekackra, “The Solar Cell Constant and Solar SpectrumMeasurement from a Research Aircraft, ”NASA Technical Report
[35] Larry D.Partain, “Solar cell and Their Applocations, ”Wiley (1995).