簡易檢索 / 詳目顯示

研究生: 郭家宏
Kuo, Chia-Hung
論文名稱: 球磨暨火花電漿燒結製備碲化物塊材及其熱電性質之研究
Thermoelectric properties of telluride bulk materials fabricated by ball milling and spark plasma sintering
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 160
中文關鍵詞: 球磨火花電漿燒結熱電性質
外文關鍵詞: Ball milling, Spark plasma sintering, Thermoelectric properties
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碲化物熱電材料的研究中,目前最受矚目的就是以奈米技術來提升碲化物的 ZT 值。此大多以成本極高的方法製作具有超晶格或是量子點等奈米結構的薄膜,在實際應用上容易受限且難以商業化量產。因此,從量產與應用的觀點來考慮的話,以粉末冶金法製備具有奈米微結構的碲化物塊材應是一個重要的研究方向。
    本論文旨在以球磨暨火花電漿燒結 (SPS) 製備具細晶粒之碲化物熱電塊材,所選用的碲化物材料為:摻鈉之碲化鉛、純碲化鉛、純碲化鉍以及碲化銻鉍這四種碲化物。研究之目的旨在探討球磨暨 SPS 燒結參數如何影響碲化物粉體以及燒結體的晶相、成分以及微觀結構,並進而關聯其熱電性質。
    摻鈉之碲化鉛塊材,其起始鑄體經由濕式球磨成粉末再以 SPS 快速燒結後,可以得到高緻密且具奈米晶粒的燒結體,但摻雜的鈉含量也隨著球磨與燒結之後而減少。比起起始鑄體,燒結塊材之 Seebeck 係數會增加,而熱傳導率會大幅下降。實驗結果與理論計算均顯示,Seebeck 係數的增加主要來自於晶界能障的貢獻;而熱傳導率的降低,則是因為細晶化增加了聲子的散射所致。燒結塊材之 ZT 值於各量測溫度下皆高於起始鑄體,並在 400 K 的量測溫度下具有最大的 ZT=0.38。
    關於純碲化鉛塊材方面,利用液態氮球磨成粉末再經 SPS 燒結的製程,除可避免粉末的氧化之外,亦可得到高緻密且具細晶粒的燒結體。此燒結的塊材雖具有較高的載子濃度,但仍可藉由因晶粒細化所貢獻 32 % ~ 36 % 的 Seebeck 係數之增幅,使其室溫 Seebeck 係數高於未經球磨而燒結的塊材。雖然在這個未經摻雜的物系中,塊材的電傳導率不高。但實驗結果顯示液氮球磨暨 SPS 燒結製程可促進 Seebeck 係數增加並使熱傳導率下降,進而有助於提升塊材的熱電優值。
    關於純碲化鉍塊材方面,藉由乾式球磨暨 SPS 燒結一樣可以得到高緻密的碲化鉍塊材,以越長時間進行球磨之粉體,經過燒結後其塊材之 Te 含量則越會減少。經由球磨處理後而燒結的塊材,其電導特性均為 N 型,且隨著研磨時間的增長而增加了塊材的載子濃度並降低載子遷移率。此碲化鉍塊材擁有較高熱電優值,原因是其功率因子的增加同時伴隨熱傳導率的下降。塊材於 450 K 的量測溫度下得到最高的 ZT= 0.45。綜合所有製程參數的影響可以說明,球磨時間會影響功率因子因應量測溫度的增減而變化的趨勢,因而促使碲化鉍最佳熱電優值的表現,由室溫移往更高溫的量測範圍,但燒結溫度的改變並未對此產生明顯的影響。
    關於碲化銻鉍塊材方面,碲化銻鉍鑄體經由乾式球磨 6 h 暨 SPS 燒結後的燒結體,亦具有高緻密且細晶粒的特性。不同溫度燒結後的塊材,其 Te 含量皆低於起始鑄體。所有球磨暨 SPS 燒結的塊材,在各個量測溫度下,其熱傳導率皆低於起始鑄體。實驗結果與理論計算均顯示,造成熱傳導率大幅下降的原因則是來自於細晶化後增加了聲子散射所致。球磨暨 SPS 350℃ 燒結之碲化銻鉍塊材,於量測溫度 300 K 之下具有最佳的 ZT 值為 0.93。此與起始鑄體的最佳 ZT=0.55 相比,提升了約 69 %。由於兩者的功率因子在 300 K 的量測溫度下非常相近,因此 ZT 值的提升主要來自於熱傳導率的降低。
    上述四碲化物材料的實驗結果,驗證了球磨暨 SPS 燒結的製程有助於碲化物塊材熱電性能的提升。其提升 ZT 值的共同原因在於藉由球磨暨 SPS 製程,使塊材的微結構細晶化,進而達到降低熱傳導率的功效。

    There have been a lot of efforts in the past few years to enhance ZT by employing nano-structures. Although high ZT values were reported in superlattice or quantum-dot structures, it has proven difficult to use them in large-scale energy-conversion applications because of limitations in both heat transfer and cost. Since thermoelectric (TE) devices require materials in large bulk form, practical approaches are required to incorporate nanoscale features within a bulk material prepared by powder metallurgy method.
    In this study, telluride TE bulk materials including PbTe: Na, PbTe, Bi2Te3, and BixSb2-xTe3 are fabricated by ball milling and spark plasma sintering (SPS). This work focuses mainly on how ball milling affects the material characterization and thermoelectric properties of telluride bulk materials.
    The experimental results show that dense and nanograined bulk samples are prepared by ball milling and SPS. However, Na dopant evaporates during the milling and sintering process. Experimental results and theoretical calculations demonstrate that the enhancement in Seebeck coefficient is attributed to potential barrier effect. And the dramatic decrease in thermal conductivity is attributed to increase in phonon scattering due to finer grain size. The milled-and-SPSed PbTe: Na sample has higher ZT values than the raw ingot sample within the measured temperature ranging from 300 to 500 K. The maximum ZT value is 0.38 at 400K, which is achieved by the milled-and-SPSed PbTe: Na sample.
    Dense fine-grained PbTe bulk materials without oxides phases are fabricated using a combined process of cryomilling (mechanical milling at cryogenic temperature) and spark plasma sintering (SPS). Even though the cryomilled-and-SPSed samples have higher carrier concentration, Seebeck coefficient of cryomilled-and-SPSed samples are larger that of the umilled-and-SPSed sample. The theoretical calculation reveals that the increase in Seebeck coefficient is about 32-36 % due to grain size effect. Although the ZT value is low for the sintered samples without adding dopants, according to our results, a novel approach that integrates cryomilling and spark plasma sintering can improve the thermoelectric performance of PbTe bulk materials.
    Dense Bi2Te3 bulk materials are fabricated using high energy ball milling and spark plasma sintering. Te composition evaporates during the milling and sintering process. The unmilled-and-sintered sample is p-type. On the other hand, within the investigated milling time in this work, all sintered samples have n-type transport behavior. The increase in carrier concentration and decrease in carrier mobility is attributed to extending the milling time. The milled-and-SPSed samples have higher ZT because of their larger power factor and lower thermal conductivity. The maximum ZT value is 0.45 at 450K, which is achieved by the milled-and-SPSed Bi2Te3 sample.
    Dense BixSb2-xTe3 bulk samples with finer grains are prepared by ball milling and SPS. However, Te composition evaporates during the SPS process. Experimental results and theoretical calculations demonstrate that the decrease in thermal conductivity is attributed to increase in phonon scattering due to finer grain size. The milled-and-SPSed PbTe: Na sample has higher ZT values than the raw ingot sample within the measured temperature ranging from 300 to 500 K. The maximum ZT value is 0.38 at 400K, which is achieved by the milled-and-SPSed PbTe: Na sample. The maximum ZT value is 0.93 at 300K, which is achieved by the BixSb2-xTe3 sample sintered at 350℃.
    Summarizing the experimental results indicates that the process of ball milling and SPS can improve the thermoelectric performance of telluride bulk materials. The common mechanism of enhancement in ZT is lowering thermal conductivity owning to decreasing grain size.

    中文摘要 I Abstract III 誌謝 V 總目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 理論基礎與文獻回顧 4 2-1 基本熱電效應 4 2-1-1 Seebeck 效應 4 2-1-2 Peltier 效應 4 2-1-3 Thomson 效應 5 2-1-4 熱電優值 (Figure of merit) 與能源轉換效率 6 2-1-5 材料的熱電優值 8 2-2 熱電材料的介紹 15 2-2-1 熱電材料的選擇 15 2-2-2 提升材料熱電性能的方法 16 2-2-3 熱電塊材的種類 19 2-3 熱電塊材的製備方法 29 2-3-1 熔煉法 29 2-3-2 粉末冶金法 30 2-3-3 火花電漿燒結技術 31 2-4 碲化物系之相關熱電塊材研究 37 2-4-1 碲化鉛物系之相關熱電塊材研究 37 2-4-2 碲化鉍物系之相關熱電塊材研究 38 第三章 實驗方法與步驟 46 3-1 實驗藥品及原料 46 3-2 粉體球磨試驗 46 3-2-1 濕式攪拌球磨 (研磨溶劑為無水酒精) 46 3-2-2 液態氮球磨 (研磨溶劑為液態氮) 47 3-2-3 乾式攪拌球磨 (研磨溶劑為惰性氣體-氬氣) 47 3-3 粉體之性質測定 47 3-3-1 粉體相鑑定分析 47 3-3-2 粉體顯微結構觀察 48 3-4 碲化物燒結體的製備 50 3-4-1 生坯成形 50 3-4-2 火花電漿燒結 (SPS, Spark Plasma Sintering) 50 3-5 碲化物塊材的熱電性質量測 52 3-5-1 電傳導係數和Seebeck係數量測 52 3-5-2 熱傳導率量測 52 3-5-3 載子濃度及遷移率量測 53 3-6 碲化物塊材之材料特性分析 56 3-6-1 塊材相鑑定分析 56 3-6-2 塊材微結構觀察 56 3-6-3 塊材成分分析 56 第四章 結果與討論 58 4-1 濕式球磨暨火花電漿燒結製備摻鈉之碲化鉛 (PbTe: Na) 塊材 58 4-1-1 濕式球磨對摻鈉之碲化鉛粉體的影響 58 4-1-1-1 粉體的相鑑定與晶徑大小分析 58 4-1-1-2 粉體的顯微結構分析 59 4-1-2 不同球磨暨燒結參數對摻鈉之碲化鉛燒結體的影響 60 4-1-2-1 燒結體的相鑑定分析 60 4-1-2-2 燒結體的相對密度以及顯微結構分析 60 4-1-2-3 燒結體的組成成分分析 62 4-1-3 摻鈉之碲化鉛燒結體的熱電性質 62 4-1-3-1 燒結體之載子濃度、遷移率以及電傳導率 62 4-1-3-2 燒結體之Seebeck 係數與功率因子 64 4-1-3-3 燒結體之熱傳導率與熱電優值 66 4-1-4 總結 67 4-2 液態氮球磨暨火花電漿燒結製備碲化鉛 (PbTe) 塊材 85 4-2-1 液態氮球磨對碲化鉛粉體的影響 85 4-2-1-1 粉體的相鑑定與晶徑大小分析 85 4-2-1-2 粉體的顯微結構分析 85 4-2-2 不同球磨暨燒結參數對碲化鉛燒結體的影響 86 4-2-2-1 燒結體的相鑑定分析 86 4-2-2-2 燒結體的相對密度以及顯微結構分析 86 4-2-2-3 燒結體的組成成分分析 87 4-2-3 碲化鉛燒結體的熱電性質 88 4-2-3-1 燒結體之載子濃度、遷移率以及電傳導率 88 4-2-3-2 燒結體之 Seebeck 係數與功率因子 89 4-2-3-3 燒結體之熱傳導率與熱電優值 91 4-2-4 總結 91 4-3 乾式球磨暨火花電漿燒結製備碲化鉍 (Bi2Te3) 塊材 105 4-3-1 乾式球磨對碲化鉍粉體的影響 105 4-3-1-1 粉體的相鑑定及晶徑大小分析 105 4-3-1-2 粉體的顯微結構分析 105 4-3-2 不同球磨暨燒結參數對碲化鉍燒結體的影響 106 4-3-2-1 燒結體的相鑑定分析 106 4-3-2-2 燒結體的相對密度及顯微結構分析 106 4-3-2-3 燒結體的組成成分分析 107 4-3-3 不同球磨時間對碲化鉍燒結體熱電性質的影響 108 4-3-3-1 燒結體之燒結體之載子濃度以及 Seebeck 係數 108 4-3-3-2 燒結體之載子遷移率、電傳導率與功率因子 109 4-3-3-3 燒結體之熱傳導率與熱電優值 110 4-3-4 不同 SPS 燒結溫度對碲化鉍燒結體熱電性質的影響 111 4-3-4-1 燒結體之載子濃度、遷移率及電傳導率 111 4-3-4-2 燒結體之 Seebeck 係數與功率因子 112 4-3-5 總結 113 4-4 乾式球磨暨火花電漿燒結製備碲化銻鉍 (BixSb2-xTe3) 塊材 130 4-4-1 乾式球磨對摻碲化銻鉍粉體的影響 130 4-4-1-1 粉體的相鑑定與晶徑大小分析 130 4-4-1-2 粉體的顯微結構分析 131 4-4-2 不同 SPS 燒結參數對碲化銻鉍燒結體的影響 131 4-4-2-1 燒結體的相鑑定分析 131 4-4-2-2 燒結體的相對密度及顯微結構分析 131 4-4-2-3 燒結體的組成成分分析 132 4-4-3 碲化銻鉍燒結體的熱電性質 133 4-4-3-1 燒結體之載子濃度、遷移率及電傳導率 133 4-4-3-2 燒結體之 Seebeck 係數與功率因子 133 4-4-3-3 燒結體之熱傳導率與熱電優值 134 4-4-4 總結 135 第五章 總結論 147 第六章 未來研究方向 149 參考文獻 150 作者自述 158

    1. D. M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, USA, (1995).
    2. G. S. Nolas, J. W. Sharp and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg (2001).
    3. D. M. Rowe, Thermoelectrics Handbook: Micro to Nano, CRC Press, New York (2006).
    4. T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, 「Quantum Dot Superlattice Thermoelectric Materials and Devices,」 Science, 297, 2229 (2002).
    5. R. Venkatasubramanian, E. Slivola, T. Colpitts, B. O'Quinn, 「Thin-Film Thermoelectric Devices with High room-Temperature Figures of Merit,」 Nature, 413, 597 (2001).
    6. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G.. Kanatzidis, 「Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit,」 Science, 303, 818 (2004).
    7. E. Quarez, K. F. Hsu, R. Pcionek, N. Frangis, E. K. Polychroniadis and M. G. Kanatzidis, 「Nanostructuring, Compositional Fluctuations and Atomic Ordering in the Thermoelectric Materials AgPbmSbTe2+m. The Myth of Solid Solutions,」 J. Am. Chem. Soc., 127, 9177 (2005).
    8. T. J. Seebeck, 「Ueber den magnetismus der galvenische kette,」 Abh. K. Akad. Wiss. Berlin, 289 (1821).
    9. T. J. Seebeck, 「Magnetische polarisation der metalle und erze durck temperatur-differenz,」 Abh. K.Akad. Wiss. Berlin, 265 (1823).
    10. T. J. Seebeck, 「Methode, Platinatiegel auf ihr chemische reinheit durck thermomagnetismus zu prufen,」 Schweigger's J. Phys., 46, 101 (1826).
    11. J. C. A Peltier, 「Nouvelles experiences sur la caloricit6 des courants electrique,」 Ann. Chem. Phys., 56, 371 (1834).
    12. W. Thomson, 「An Account of Carnot's Theory of the Motive Power of Heat,」 Proc. R. Soc. Edinburgh, 16, 541 (1849).
    13. W. Thomson, 「On a Mechanical Theory of Thermoelectric Currents,」 Philos. Mag., 5, 529 (1852).
    14. W. Thomson, 「Account of Researches in Thermoelectricity,」 Philos. Mag., 5, 62 (1854).
    15. W. Thomson, 「On the Electrodynamic Qualities of Metals,」 Philos. Trans. R. Soc. London, 146, 649 (1856).
    16. P. W. Bridgeman, The Thermodynamics of Electrical Phenomena in Metals, Dover, New York (1961).
    17. F. Roesser, 「Thermoelectric Thermometry,」 J. Appl. Phys., 11, 388 (1940).
    18. R. P. Benedict, Fundamentals of Temperature, Pressure and Flow Measurements, 3rd ed., Wiley-Interscience, New York (1984).
    19. H. B. Callen, 「Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic and Galvanomagnetic Effects,」 Phys. Rev., 78, 1349 (1948).
    20. H. B. Callen, 「Irreversible thermodynamics of thermoelectricity,」 Rev. Mod. Phys., 26, 237 (1954).
    21. C. Kittel, Introduction to Solid State Physics, 7th ed., John Wiley & Sons, New York (1996).
    22. G. D. Mahan and M. Bartkowiak, 「Wiedemann--Franz Law at Boundaries,」 Appl. Phys. Lett., 74, 953 (1999).
    23. M. Cutler and N. F. Mott, 「Observation of Anderson Localization in an Electron Gas,」 Phys. Rev. 181, 1336 (1969).
    24. S. G. Kim, I. I. Mazin and D. J. Singh, 「First-Principles Study of Zn-Sb Thermoelectrics,」 Phys. Rev. B, 57, 6199 (1998).
    25. K. Uehara and J. S. Tse, 「Calculations of Transport Properties with the Linearized Augmented Plane-Wave Method,」 Phys. Rev. B, 61, 1639 (2000).
    26. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, 「Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States,」 Science, 321, 554 (2008).
    27. K. Kishimoto and T. Koyanagi, 「Preparation of Sintered Degenerate N-type PbTe with a Small Grain Size and Its Thermoelectric Properties,」 J. Appl. Phys., 92, 2544 (2002).
    28. K. Kishimoto, M. Tsukamoto and T. Koyanagi, 「Temperature Dependence of the Seebeck Coefficient and the Potential Barrier Scattering of N-type PbTe Films Prepared on Heated Glass Substrates by RF Sputtering,」 J. Appl. Phys., 92, 5331 (2002).
    29. K. Kishimoto, K. Yamamoto and T. Koyanagi, 「Influences of Potential Barrier Scattering on the Thermoelectric Properties of Sintered N-type PbTe with a Small Grain Size,」 Jpn. J. Appl. Phys., 42, 501 (2003).
    30. C. W. Nan and R. Birringer, 「Determining the Kapitza Resistance and the Thermal Conductivity of Polycrystals: A Simple Model,」 Phys. Rev. B, 57, 8264, (1998).
    31. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono and K. Koumoto, 「Giant Thermoelectric Seebeck Coefficient of a Two-Dimensional Electron Gas in SrTiO3,」 Nature Mater., 6, 129 (2007).
    32. Y. M. Lin and M. S. Desselhaus, 「Thermoelectric Properties of Superlattice Nanowires,」 Phys. Rev. B, 68, 075304 (2003).
    33. M. C. Steele and F. D. Rosi, 「Thermal Conductivity and Thermoelectric Power of Germanium‐Silicon Alloys,」 J. Appl. Phys., 29, 1517 (1958).
    34. D. M. Rowe and C. M. Bhandari, Modern Thermoelectrics, Rinehart & Winston, London (1983).
    35. G. A. Slack and M. A. Hussein, 「The Maximum Possible Conversion Efficiency of Silicon‐Germanium Thermoelectric Generators,」 J. Appl. Phys., 70, 2694 (1991).
    36. G. S. Nolas, D. T. Morelli and T. M. Tritt, 「Skutterudites: A Phonon-Glass-Electron-Crystal Approach to Advanced Thermoelectric Energy Conversion Applications,」 Annu. Rev. Mater. Sci., 29, 89 (1999).
    37. G. S. Nolas, M. Kaeser, R. Littleton IV and T. M. Tritt, 「High Figure of Merit in Partially Filled Ytterbium Skutterudite Materials,」 Appl. Phys. Lett., 77, 1855 (2000).
    38. G. S. Nolas, J. Poon and M. Kanatzidis, 「Recent Developments in Bulk Thermoelectric Materials,」 MRS Bulletin, 31, 199 (2006).
    39. B. C. Sales, D. Mandrus and R. K. Williams, 「Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials,」 Science, 272, 1325 (1996).
    40. J. S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang and T. Hirai, 「Thermoelectric Properties of the N-type Filled Skutterudite Ba0.3Co4Sb12 Doped with Ni,」 J. Appl. Phys., 91, 3698 (2002).
    41. N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky and H. Metiu, 「Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30 and Ba8In16Sn30,」 J. Chem. Phys., 115, 8060 (2001).
    42. V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin and D. M. Rowe, 「Preparation and Thermoelectric Properties of A8IIB16IIIB30IV Clathrate Compounds,」 J. Appl. Phys., 87, 7871 (2000).
    43. A. Bentien, V. Pacheco, S. Paschen, Y. Grin and F. Steglich, 「Transport Properties of Composition Tuned α- and β-Eu8Ga16-xGe30+x,」 Phys. Rev. B, 71, 165206 (2005).
    44. G. K. H. Madsen, K. Schwarz, P. Blaha and D. J. Singh, 「Electronic Structure and Transport in Type-I and Type-VIII Clathrates Containing Strontium, Barium, and Europium,」 Phys. Rev. B, 68, 125212 (2003).
    45. W. Jeischko, 「Transition Metal Stannides with MgAgAs and MnCuAl Type Structure,」 Metall. Trans. A, 1, 3159 (1970).
    46. J. Tobola, J. Pierre, S. Kaprzyk, R. V. Skolozdra and M. A. Kouacou, 「Crossover from Semiconductor to Magnetic Metal in Semi-Heusler Phases as a Function of Valence Electron Concentration,」 J. Phys. Condens. Matter, 10, 1013 (1998).
    47. S. Sakurada and N. Shutoh, 「Effect of Ti Substitution on the Thermoelectric Properties of (Zr,Hf)NiSn Half-Heusler Compounds,」 Appl. Phys. Lett., 86, 082105 (2005).
    48. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G. P. Meisner and C. Uher, 「Effects of Partial Substitution of Ni by Pd on the Thermoelectric Properties of ZrNiSn-based Half-Heusler Compounds,」 Appl. Phys. Lett., 79, 4165 (2001).
    49. S. Bhattacharya, A. L. Pope, R. T. Littleton IV, T. M. Tritt, V. Ponnambalam, Y. Xia and S. J. Poon, 「Effect of Sb Doping on the Thermoelectric Properties of Ti-based Half-Heusler Compounds, TiNiSn1-xSbx,」 Appl. Phys. Lett., 77, 2476 (2000).
    50. Y. Yang, G. P. Meisner and L. Chen, 「Strain Field Fluctuation Effects on Lattice Thermal Conductivity of ZrNiSn-based Thermoelectric Compounds,」 Appl. Phys. Lett., 85, 1140 (2004).
    51. Terasaki, Y. Sasago and K. Uchinokura, 「Large Thermoelectric Power in NaCo2O4 Single Crystals,」 Phys. Rev. B, 56, R12685 (1997).
    52. T. Takami, H. Nanba, Y. Umeshima, M. Itoh, H. Nozaki, H. Itahara and J. Sugiyama, 「Phase separation in the CoO2 layer observed in thermoelectric layered cobalt dioxides,」 Phys. Rev. B, 81, 014401 (2010).
    53. J. Androulakis, Pantelis Migiakis and J. Giapintzakis, 「La0.95Sr0.05CoO3: An Efficient Room-Temperature Thermoelectric Oxide,」 Appl. Phys. Lett., 84, 1099 (2004).
    54. K. Koumoto, I. Terasaki and M. Murayama, Oxide Thermoelectrics, Research Signpost, India (2002).
    55. Y. Ando, N. Miyamoto, K. Segawa, T. Kawata and I. Terasaki, 「Specific-Heat Evidence for Strong Electron Correlations in the Thermoelectric Material (Na,Ca)Co2O4,」 Phys. Rev. B, 60, 10580 (1999).
    56. B. R. Pamplin, Crystal Growth, 2nd ed., Pergamon Press, Oxford (1980).
    57. W. D. Lawson, 「A Method of Growing Single Crystals of Lead Telluride and Lead Selenide,」 J. Appl. Phys., 22, 1444 (1951).
    58. Y. Sato, M. Fujimoto and A. Kobayashi, 「Effects of Heat Treatment on Lead Telluride under Tellurium Pressure: Carrier Concentration Dependence of Mobility and Etch Pits on Worked Surfaces,」 Jpn. J. Appl. Phys., 2, 688 (1963).
    59. R. Breschi, A, Camanzi and V. Fano, 「Defects in PbTe Single Crystals,」 J. Crystal Growth, 58, 399 (1982).
    60. M. P. Gomez, D. A. Stevenson and R. A. Huggins, 「Self-diffusion of Pb and Te in Lead Telluride,」 J. Phys. Chem. Solids, 32, 335 (1971).
    61. E. P. A. Metz, R. C. Miller and R. Mazelsky, 「A Technique for Pulling Single Crystals of Volatile Materials,」 J. Appl. Phys., 33, 2016 (1962).
    62. W. F. Leverton, 「Floating Crucible Technique for Growing Uniformly Doped Crystals,」 J. Appl. Phys., 29, 1241 (1958).
    63. N. Kh. Abrikosov and L. D. Ivanova, 「Single Crystals of Solid Solutions of the System Bi2Te3-Bi2Se3-Sb2Te3,」 Inorg. Mater., 15, 926 (1979).
    64. W. G. Pfann, Zone Melting, 2nd ed., John Wiley & Sons, New York (1966).
    65. T. Caillat, M. Carle, D. Perrin, H. Scherrer and S. Scherrer, 「Study of the Bi-Sb-Te Ternary Phase Diagram,」 J. Phys. Chem. Solids, 53, 227 (1992).
    66. A. Aivazov, A. I. Anukhin and I. S. Gavrilenko, 「Zone Melting Characteristics of Complex Semiconductors,」 Inorg. Mater., 27, 780 (1991).
    67. J. Ye, L. Ajdelsztajn and J. M. Schoenung, 「Bulk Nanocrystalline Aluminum 5083 Alloy Fabricated by a Novel Technique: Cryomilling and Spark Plasma Sintering,」 Metall. Mater. Trans. A, 37, 2569 (2006).
    68. C. Suryanarayana, 「Mechanical alloying and milling,」 Progr. Mater. Sci., 46, 1 (2001).
    69. W. Zhang, L. Zhang, Y. Cheng, Z. Hui, X. Zhang, Y. Xie and Y. Qian, 「Synthesis of Nanocrystalline Lead Chalcogenides PbE (E = S, Se, or Te) from Alkaline Aqueous Solutions,」 Mater. Res. Bull., 35, 2009 (2000).
    70. T. Mokari, M. Zhang and P. Yang, 「Shape, Size and Assembly Control of PbTe Nanocrystals,」 J. Am. Chem. Soc., 129, 9864 (2007).
    71. R. Chaim, Z. Shen and M. Nygren, 「Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering,」 J. Mater. Res., 19, 2527 (2004).
    72. V. Mamedov, 「Spark Plasma Sintering as Advanced PM Sintering Method,」 Powder Metall., 45, 322 (2002).
    73. J. E. Garay, U. Anselmi-Tamburini and Z. A. Munir, 「Enhanced Growth of Intermetallic Phases in the Ni–Ti System by Current Effects,」 Acta Mater., 51, 4487 (2003).
    74. J. E. Garay, S. C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar and Z. A. Munir, 「Electric current enhanced defect mobility in Ni3Ti intermetallics,」 Appl. Phys. Lett., 85, 573 (2004).
    75. G. Xie, O. Ohashi, T. Yoshioka, M. Song, K. Mitsuishi, H. Yasuda, K. Furuya and T. Noda, 「Effect of Interface Behavior between Particles on Properties of Pure Al Powder Compacts by Spark Plasma Sintering,」 Mater. Trans., 42, 1846 (2001).
    76. M. Omori, 「Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System,」 Mater. Sci. Eng., A, 287, 183 (2000).
    77. M. Tokita, 「Development of Large-Size Ceramic/Metal Bulk FGM Fabricated by Spark Plasma Sintering,」 Mater. Sci. Forum, 308-311, 83 (1999).
    78. Z. J. Shen, M. Johnsson, Z. Zhao and M. Nygren, 「Spark Plasma Sintering of Alumina,」 J. Am. Ceram. Soc., 85, 1921 (2002).
    79. E. Olevsky and L. Froyen, 「Constitutive Modeling of Spark Plasma Sintering of Conductive Materials,」 Scr. Mater., 55, 1175 (2006).
    80. S. W. Wang, L. D. Chen, T. Hirai and Y. S. Kang, 「Microstructure Inhomogeneity in Al2O3 Sintered Bodies Formed during the Plasma-Activated Sintering Process,」 J. Mater. Sci. Lett., 18, 1119 (1999).
    81. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, 「High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,」 Science, 320, 634 (2008).
    82. W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt, 「Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys,」 Appl. Phys. Lett., 94, 102111 (2009).
    83. R. F. Brebrik and R. S. Allgaier, 「Composition Limits of Stability of PbTe,」 J. Chem. Phys., 32, 1826 (1960).
    84. R. S. Allgaier and W. W. Scanlon, 「Mobility of Electrons and Holes in PbS, PbSe and PbTe between Room Temperature and 4.2 K,」 Phys. Rev., 111, 1029 (1958).
    85. S. Yoneda, E. Ohta, H. T. Kaibe, I. J. Ohsugi, I. Shiota and I. A. Nishida, 「Grain Size Effect on Thermoelectric Properties of PbTe Prepared by Spark Plasma Sintering,」 Mater. Trans. 42, 329 (2001).
    86. J. P. Heremans, C. M. Thrush and D. T. Morelli, 「Thermopower enhancement in lead telluride nanostructures,」 Phys. Rev. B, 70, 115334 (2004).
    87. H. Wang, J. F. Li, C. W. Nan and M. Zhou, 「High-Performance Ag0.8Pb18+xSbTe20 Thermoelectric Bulk Materials Fabricated by Mechanical Alloying and Spark Plasma Sintering,」 Appl. Phys. Lett., 88, 092104 (2006).
    88. J. Martin and G. S. Nolas, 「PbTe Nanocomposites Synthesized from PbTe Nanocrystals,」 Appl. Phys. Lett., 90, 222112 (2007).
    89. H. Wang, J. F. Li and T. Kita, 「Thermoelectric Enhancement at Low Temperature in Nonstoichiometric Lead-Telluride Compounds,」 J. Phys. D: Appl. Phys., 40, 6839 (2007).
    90. X. Ji, B. Zhang, Z. Su, T. Holgate, J. He and T. M. Tritt, 「Nanoscale Granular Boundaries in Polycrystalline Pb0.75Sn0.25Te: An Innovative Approach to Enhance the Thermoelectric Figure of Merit,」 Phys. Status Solidi A, 206, 2, 221 (2009).
    91. Y. Q. Cao, T. J. Zhu and X. B. Zhao, 「Low Thermal Conductivity and Improved Figure of Merit in Fine-Grained Binary PbTe Thermoelectric Alloys,」 J. Phys. D: Appl. Phys., 42, 015406 (2009).
    92. J. Martin, L. Wang, L. Chen and G. S. Nolas, 「Enhanced Seebeck Coefficient through Energy-Barrier Scattering in PbTe Nanocomposites,」 Phys. Rev. B, 79, 115311 (2009).
    93. J. R. Drabble and C. H. L. Goodman, 「Chemical Bonding in Bismuth Telluride,」 J. Phys. Chem. Solids, 5, 142 (1958).
    94. G. Offergeld, J. van Cakenberghe, 「Determination de la Composition a Fusion Congruente de Semiconducteurs Binaires par Analyse Thermique Differentielle: Application a Bi2Te3, Sb2Te2 et Bi2Se3,」 J. Phys. Chem. Solids, 11, 310 (1959).
    95. J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer and S. Scherrer, 「Thermal Properties of High Quality Single Crystals of Bismuth Telluride-Part I: Experimental Characterization,」 J. Phys. Chem. Solids, 49, 10, 1237 (1988).
    96. J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer and S. Scherrer, 「Thermal Properties of High Quality Single Crystals of Bismuth Telluride-Part II: Mixed-Scattering Model,」 J. Phys. Chem. Solids, 49, 10, 1249 (1988).
    97. J. Navratil, Z. Stary, T. Plechacek, 「Thermoelectric Properties of P-type Antimony Bismuth Telluride Alloys Prepared by Cold Pressing,」 Mater. Res. Bull., 31, 1559 (1996).
    98. G. R. Miller and C. Y. Li, 「Evidence for the Existence of Antistructure Defects in Bismuth Telluride by Density Measurements,」 J. Phys. Chem. Solids, 26, 173 (1965).
    99. J. M. Schultz, J. P. Mchugh and W. A. Tiller, 「Effects of Heavy Deformation and Annealing on the Electrical Properties of Bi2Te3,」 J. Appl. Phys., 33, 2443 (1962).
    100. L. D. Zhao, B. P. Zhang, J. F. Li, M. Zhou and W. S. Liu, 「Effects of Process Parameters on Electrical Properties of n-type Bi2Te3 Prepared by Mechanical Alloying and Spark Plasma Sintering,」 Physica B, 400, 11 (2007).
    101. L. D. Zhao, B. P. Zhang, W. S. Liu, H. L. Zhang and J. F. Li, 「Effects of Annealing on Electrical Properties of N-type Bi2Te3 Fabricated by Mechanical Alloying and Spark Plasma Sintering,」 J. Alloys. Compd., 467, 91 (2008).
    102. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen and Z. Ren, 「Enhanced Thermoelectric Figure of Merit in P-type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks,」 Nano Lett., 8, 2580 (2008).
    103. W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt, 「High Thermoelectric Performance BiSbTe Alloy with Unique Low-Dimensional Structure,」 J. Appl. Phys., 105, 113713 (2009).
    104. T. Hamachiyo, M. Ashida, K. Hasezaki, H. Matsunoshita, M. Kai and Z. Horita, 「Thermoelectric Properties of Bi2Te3-Related Materials Finely Grained by Mechanical Alloying and High Pressure Torsion,」 Mater., Trans. 50, 1592 (2009).
    105. K. Hasezaki, T. Hamachiyo, M. Ashida, T. Ueda and Y. Noda, 「Thermoelectric Properties and Scattering Factors of Finely Grained Bi2Te3-Related Materials Prepared by Mechanical Alloying,」 Mater. Trans., 51, 863 (2010).

    下載圖示 校內:2015-01-01公開
    校外:2015-01-01公開
    QR CODE