簡易檢索 / 詳目顯示

研究生: 賴妍帆
Lai, Yen-Fan
論文名稱: 在無線感測網路上之多層資料叢聚模型與群體管理
Hierarchical Data Aggregation Model and Group Management for Wireless Sensor Networks
指導教授: 鄭憲宗
Cheng, Sheng-tzong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 55
中文關鍵詞: 無線感測網路群體管理資料叢集
外文關鍵詞: data aggregation, group management, wireless sensor network
相關次數: 點閱:224下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在無線通訊中的無線感測網路(wireless sensor networks)快速崛起,無線感測網路是由一大群分散的感測節點(sensor node)所組成,這些感測節點透過資料收集和彙整,提供給使用者取得許多有效得資訊。在已經部署好的感測節點中,架構起網路組織,使得感測節點收集到的資訊能以消耗最少的感測器能量的方式,自感測節點回傳到使用者,是一項相當重要的研究議題之一。

    在這篇論文中,我們提出一個階層式傳輸架構,以群體架構(group-based)為基礎來組織感測節點,藉由兩階段選舉來選出群體領導人(group-leader),各群以此群體領導人當成代表來傳送資料。每當感測節點定期產生資料時,在這份資料從感測節點傳送到使用者的過程中,會透過一個分散式資料叢集模型來處理資料。資料處理的過程中,並不會影響這份資料對於使用者的可讀性。如此一來,除了可以達到一定程度負載平衡,在資料傳輸上也比較有效率,無線感測網路的生命週期也可因此而延長。

    Sensor network is an emerging area of wireless networking where hundreds or even thousands of unattended sensors runs as data generator. Sensor nodes can coordinate to perform distributed sensing of environmental phenomena. Disseminating data generated by sensors to sinks at different location is one of useful function of wireless sensor networks (WSN). Recent research focus much on how does a source forward sensor directly to the sink. As sensors have limited resource, energy consuming in interest propagation or in grid maintenance or in dissemination tree is larger than that in sensor data transmission. In this paper, we propose novel data dissemination architecture with hierarchical data aggregation and group management. Nodes are divided into logical groups by holding a two-phase leader election. All nodes can complete for being the candidates for another contest. Leader will be elected among these candidates. During the sensing task, sensor nodes periodically generate sensory data, and these data will be processed through a distributed aggregation way. The processed data is sent from nodes to sinks through a four-tier data forwarding model. This architecture can be generally applied to other sensor systems, where communication efficiency is a paramount concern and networking resource are limited.

    Chapter 1. Introduction 1 1.1. preliminary 1 1.2. Motivations 1 1.3. Organizations 2 Chapter 2. background and related work 3 2.1 IEEE 802.11 Wireless LAN Technology 3 2.2 Wireless sensor networks 4 2.3 Data dissemination in WSN 6 Directed Diffusion 6 SPIN 7 TTDD 8 DEED 9 Chapter 3. NETWORK MODEL 11 3.1 Aggregator 12 3.2 Two-Layer transmission architecture 13 3.2.1 WLAN layer 13 3.2.2 WSN layer 14 3.3 Group leader election 15 3.4.1 Candidate election 17 3.4.2 Leader election 18 3.4 Two-tier Query forwarding: 19 3.5 Four-tier data forwarding 22 3.6 Five-layer data aggregator 24 3.6.1 T1:raw data aggregation 26 3.6.2 T2:in-node aggregation 27 3.6.3 T3:group aggregation 27 3.6.4 T4:aggregator aggregation 28 3.6.5 T5:agent aggregation 29 3.7 Summary 29 Chapter 4. Performance analysis 32 4.1 Power consumption model 32 Chapter 5. Experimental results 34 5.1 TOSSIM 34 5.2 Metrics 36 5.3 Multi-Round Leader Election 37 5.3.1 Vary the maxmum backoff time 38 5.3.2 Fixed backoff time 39 5.4 Data aggregation 46 5.4.1 Traffic load 47 5.4.2 Number of message 47 5.4.3 Power consumption 50 Chapter 6. Conclusion 53 Reference 54

    [1] C. Intanagonwiwat, R. Govindan, D. Estrin and J. Heidemann, “Directed Diffusion for Wireless Sensor Networking,” IEEE/ACM Transaction on Networking, vol. 11, pp. 529–551, February 2003.
    [2] W. Heinzelman, J. Kulik and H. Balakrishnanl, “Negotiation-based protocols for disseminating information in wireless sensor networks”, Wireless Networks, vol. 8, pp.169-185 , March 2002.
    [3] F. Ye, H. Luo, J. Cheng, S. Lu, and L.Zhang. “A two-tiew data dissemination model for large scale wireless sensor networks,” Wireless Networks, vol.11 pp. 161-175, January 2005
    [4] H. S. Kim and W. H. Kwon “Dynamic Delay-Constrained Minimum-Energy Dissemination in Wireless Sensor Networks”, ACM Transaction on Embedded Computing Systems Vol. 4, pp. 679-706, August 2005.
    [5] R.S. Chang and A.C. Lee, “An Energy Efficient Data Query Architecture for Large Scale Sensor Networks”, IEICE TRANSACTIONS ON COMMUNICATIONS, vol. 2, pp. 217-227, February 2007.
    [6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler and K. Pister, “System architecture directions for networked sensors”, Proceedings of International Conference on Architectural Support for Programming Language and Operating Systems(ASPLOS-IX),2002
    [7] C. E. Perkins and P. Bhagwat “Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers”, ACM SIGCOMM Computer Communication Review , Proceedings of the conference on Communications architectures, protocols and applications SIGCOMM '94, pp. 234-244 Vol. 24, October 1994
    [8] C. E. Perkins and E. M. Royer, ”Ad-hoc On-Demand Distance Vector Routing “Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications WMCSA '99 , 1999
    [9] Q. Wang, M. Hempstead and W. Yang, “A Realistic Power Consumption Model for Wireless Sensor Network Devices”, In Proceedings of the Third Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks(SECON). Reston, VA, September 2006.
    [10] P. Levis, N. Lee, M. Welsh and D. Culler, “TOSSIM: Accurate and scalable Simulation of Entire TinyOS Applications”
    [11] P. Levis and N. Lee, “TOSSIM: A Simulator for TinyOS Networks”
    [12] I. F. Akyildiz, W. Su, Y. Sankarasubmmaiam and E. Cayirci, “A Survey On Sensor Networks”, IEEE Communication Magazine, pp.102-114, August 2002
    [13] MTS/MDA sensor and data acquisition Boards User Manual, May 2003

    下載圖示
    2010-07-25公開
    QR CODE