簡易檢索 / 詳目顯示

研究生: 黃韻慈
Huang, Yun-Tzu
論文名稱: 由白點症病毒所誘發之瓦氏效應分析其主要致病機制
WSSV pathogenesis: Roles of the induced Warburg effect
指導教授: 王涵青
Wang, Han-Ching
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 118
中文關鍵詞: 白蝦白點症病毒瓦氏效應蛋白質體學雷帕黴素標靶蛋白訊息傳遞路徑
外文關鍵詞: Litopenaeus vannamei, White spot syndrome virus, Warburg effect, Proteome, mTOR signaling pathway
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 90年代之際,由於過高的養殖密度及缺乏適當的經營管理,導致蝦類病毒性疾病的爆發,使得全球養蝦產業面臨瓦解之危機。其中又以由白點症病毒 (WSSV)所造成的白點症 (WSD)為最嚴重的蝦類病毒性疾病,可於短時間內造成蝦類大量死亡。過去研究由WSSV感染前後的蝦體蛋白質差異性表現圖譜發現,宿主粒線體之代謝路徑於病毒感染後有轉變的趨勢;另在代謝體學分析中,指出蝦體於感染WSSV後,可觀察到葡萄醣大量被利用而乳醣大量累積的現象。綜合以上結果,我們推測於WSSV感染後,將誘導宿主代謝路徑走向類似癌細胞中發現之Warburg effect (或稱作有氧醣解作用),因而本實驗希望由WSSV所誘發之Warburg effect分析其主要致病機制。本實驗首先利用即時定量PCR偵測可調控Warburg effect的重要因子,結果於WSSV感染過程皆呈現差異性表現。接續將粒線體相關蛋白voltage dependent anion channel (VDAC)進行基因默化後觀測其Warburg effect,但由於控制組之Warburg effect亦有減緩之現象,因此無法利用基因默化之實驗釐清VDAC於白點症病毒誘發之Warburg effect中所扮演之角色。本實驗接續利用具有高靈敏度之label-free蛋白質體學系統對於注射WSSV及生理食鹽水 (PBS)之蝦血球細胞蛋白質進行高通量分析,總共鑑定出約八百種蝦類蛋白質,其中超過六百個具有顯著差異性表現,並且參與能量代謝之酵素於病毒感染早期有上升之趨勢,皆符合 Warburg effect。另外,於本實驗蛋白體學研究亦發現,可活化 mTOR之蛋白質 Rheb其表現量於病毒感染早期及晚期有極大之差異,mTOR訊息傳遞路徑為推動整體 Warburg effect的發生及調控轉譯作用的重要因子。進一步利用 mTOR抑制劑處理發現病毒的基因表現及病毒顆粒累積皆受到影響,推測 mTOR訊息傳遞路徑可能於白點症病毒致病機制中扮演重要角色。本實驗驥望藉由釐清 WSSV之致病機轉,進而發展白點症之治療與防治之策略。

    White spot disease (WSD) is a treat to the global shrimp industry that results in enormous economic losses worldwide. White spot syndrome virus (WSSV), the causative agent of WSD, is a novel, large dsDNA virus showing only a few similarities to current known viruses. Because of its uniqueness, the infection model of WSSV needs to be studied ab initio. In this study, we used systems biology to study the global interactions between WSSV and its host. Systems biology is an integrated approach that acquires and assembles high-throughput information into a database; develops and uses computational algorithms to analyze these data; and then designs experimental systems to test the hypothetical models. This approach allows us to construct a global cell pathway network that shed new light on the puzzle of virus-host interactions. To date, we have already known that that mitochondrial metabolism was very likely to be involved in the WSSV replication cycle. Moreover, by measuring several factors in different metabolic pathways, we found that WSSV induces distinct cellular responses at different replication stages; specifically, the Warburg effect in the WSSV genome replication stage, and cell death in the late stage.
    In this research, we used a label-free quantitative proteomic approach to identify in vivo alterations in the proteome of shrimp hemocytes at different stages of WSSV infection. After integrating time series of proteomic profiles with computational modeling approaches to identify the key changes that WSSV infection, a global metabolic network of shrimp hemocyte cells was produced. In this network, several characteristics fits the Warburg effect, such as a shift from glycolysis to the pentose phosphate pathway. To understand the potential role of these alterations to WSSV pathogenesis, molecular and animal experiments were subsequently conducted. By using specific inhibitors and dsRNA mediated RNA interference to block the activity of the putative bottlenecked factors, we found that mTOR pathway play an important role for WSSV pathogenesis and WSSV-induced Warburg effect. We believe the work is very important both to science and to the aquaculture industry.

    中文摘要 I Abstract… III 誌謝…… V 目錄…… VII 表目錄… X 圖目錄…. XI 前言…… 1 材料與方法 13 1. 偵測調控Warburg effect之重要因子於病毒感染過程之表現差異 13 1-1實驗病毒來源及實驗動物 13 1-2採樣流程 13 1-3 cDNA模板製備方式 14 1-4 即時定量PCR分析方式 14 2. 利用RNAi技術平台分析VDAC於WSSV所誘發之Warburg effect中所扮演之角色 15 2-1 dsRNA製備 15 2-2實驗動物及注射劑量 16 2-3 測量血清中之葡萄醣含量 17 2-4 測量血清中之乳醣含量 17 2-5 測量病毒顆粒累積變化於粒線體相關蛋白VDAC默化後感染白點症病毒期間之變化 18 3. 白點症病毒感染前後蛋白質圖譜之變化 19 3-1 白點症病毒感染之檢測 19 3-2 蝦血球細胞蛋白質萃取及定量 20 3-3 蝦血球細胞蛋白質之分析 22 3-4 蛋白質體學結果分析 23 4. 利用抑制劑解析mTOR訊息傳遞路徑對於WSSV致病機制之重要性 24 4-1 預先利用 mTOR抑制劑處理後再感染白點症病毒觀察磷酸化之4E-BP蛋白質表現量 24 4-2 白點症病毒感染後利用mTOR抑制劑rapamycin處理蝦隻觀察死亡率 26 4-3 預先利用mTOR抑制劑rapamycin處理後再感染白點症病毒觀察死亡率 26 4-4 預先利用mTOR抑制劑rapamycin處理後再感染白點症病毒觀察觀察病毒基因表現量 27 4-4 預先利用 mTOR抑制劑 rapamycin處理後再感染白點症病毒觀察觀察病毒顆粒累積量 28 4-5 預先利用 mTOR抑制劑 Torin1處理後再感染白點症病毒觀察病毒基因表現量 28 4-6 預先利用mTOR抑制劑Torin1處理後再感染白點症病毒觀察觀察病毒顆粒累積量 29 結果…… 31 1. 調控Warburg effect之重要因子於病毒感染過程之表現差異 31 1-1 VDAC及Hexokinase基因於感染白點症病毒後之表現量 31 1-2 白蝦Pyruvate kinase基因三種isoform於感染白點症病毒後之表現量 31 1-3 調控醣解作用之重要因子Hypoxia induce factor-1α於病毒感染過程之表現差異 32 1-4 調控醣解作用之重要因子Thioredoxin於病毒感染過程之表現差異 33 2. VDAC於WSSV所誘發之Warburg effect中所扮演之角色 33 2-1 宿主genome中之累積病毒顆粒與病毒複製速率於粒線體相關蛋白VDAC默化後感染白點症病毒期間之變化 34 2-2 蝦血清中之葡萄醣及乳醣濃度於粒線體相關蛋白VDAC默化後於白點症病毒致病期間之變化 34 3. 白點症病毒感染前後蛋白質圖譜之變化 35 3-1 白點症病毒檢測結果 35 3-2 蝦血細胞蛋白質品質確認結果 36 3-3 感染白點症病毒之蝦血球細胞蛋白質分析 37 3-3-1 參與醣解作用與五碳醣磷酸化路徑之酵素於白點症病毒感染早期 (12 hpi)大量上升 38 3-3-2 部分參與檸檬酸循環之酵素於白點症病毒感染早期 (12 hpi)大量上升... 38 3-3-3 參與脂質代謝之酵素於白點症病毒感染早期大量上升 39 3-3-4 參與調控醣解作用及轉譯作用之訊息傳遞路徑之酵素於白點症病毒感染早期大量上升 39 3-3-5 活化mTOR信息傳導路徑相關之細胞蛋白質Rheb於病毒感染早期大量上升 40 4. mTOR訊息傳遞路徑對於WSSV致病機制之重要性 41 4-1預先利用 mTOR抑制劑處理後再感染白點症病毒之磷酸化4E-BP蛋白質表現量 41 4-2 白點症病毒感染後利用mTOR抑制劑rapamycin處理蝦隻之死亡率 42 4-3 預先利用mTOR抑制劑rapamycin處理後再感染白點症病毒之死亡率 42 4-4 rapamycin處理後再感染白點症病毒之蝦血清中乳醣濃度變化 43 4-5 rapamycin處理後再感染白點症病毒之病毒基因表現量 43 4-6 rapamycin處理後再感染白點症病毒之病毒顆粒累積現象 44 4-7 Torin1處理後再感染白點症病毒之病毒基因表現量 44 4-8 Torin1處理後再感染白點症病毒之病毒顆粒累積現象 46 討論........ 47 參考文獻 59 圖表........ 65 附錄........ 111

    1. Aoki T, Bonami JR, Lightner D, Lo CF, Stentiford G, Leu JH, Vlak J, Söderhäll K, Walker P, Flegel T, Wang HC, Xu X, Yang H. (2011) Nimaviridae. Virus Taxonomy. Oxford: Elsevier, pp. 229-234.

    2. Arzoine L, Zilberberg N, Ben-Romano R, Shoshan-Barmatz V. (2009) Voltage-dependent Anion Channel 1-based Peptides Interact with Hexokinase to Prevent Its Anti-apoptotic Activity. J. Biol. Chem. 284:3946-3955.

    3. Buchkovich NJ, Yu Y, Zampieri CA, Alwine JC. (2008) The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K–Akt–mTOR signalling pathway. Nat Rev Microbiol. 6:266-275.

    4. Chen IT, Aoki T, Huang YT, Hirono I, Chen TC, Huang JY, Chang GD, Lo CF, Wang HC. (2011) White spot syndrome virus induces metabolic changes resembling the Warburg effect in shrimp hemocytes in the early stage of infection. J Virol. 85:12919-12928.

    5. Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J. (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression ofmRNA translation. Proc Natl Acad Sci U S A. 105:17414-17419.

    6. Clower CV, Chatterjee D, Wang Z, Cantley LC, Vander Heiden MG, Krainer AR. (2010) The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci U S A. 107:1894-1899.

    7. Dang CV, Kim JW, Gao P, Yustein J. (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer. 8:51-56.

    8. David A. Guertin1 and David M. Sabatini. (2009) The Pharmacology of mTOR Inhibition. Sci. Signal. 2:pe24.

    9. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7:11-20.

    10. Delgado T, Carroll PA, Punjabi AS, Margineantu D, Hockenbery DM, Lagunoff M. (2010) Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc Natl Acad Sci U S A. 107:10696-10701.

    11. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, Proll SC, McDermott JE, Gritsenko MA, Zhang Q, Zhao R, Metz TO, Camp DG 2nd, Waters KM,Smith RD, Rice CM, Katze MG. (2010) Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics. PLoS Pathog. 6:e1000719.

    12. Faivre S, Kroemer G, Raymond E. (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 5:671-688.

    13. Foster KG, Fingar DC. (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem. 285:14071-14077

    14. George A, Panda S, Kudmulwar D, Chhatbar SP, Nayak SC, Krishnan HH. (2012) Hepatitis C virus NS5A binds to the mRNA cap-binding eukaryotic translation initiation 4F (eIF4F) complex and up-regulates host translation initiation machinery through eIF4E-binding protein 1 inactivation. J Biol Chem. 287:5042-5058.

    15. Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, Bronner V, Notcovich A, Shoshan-Barmatz V, Flescher E. (2008) Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene. 27:4636-4643.

    16. Gómez-Angelats M, Bortner CD, Cidlowski JA. (2000) Cell volume regulation in immune cell apoptosis. Cell Tissue Res. 301:33-42.

    17. Hay N, Sonenberg N. (2004) Upstream and downstream of mTOR. Genes Dev. 18:1926-1945.

    18. Jung CH, Ro SH, Cao J, Otto NM, Kim DH. (2010) mTOR regulation of autophagy. FEBS Lett. 584:1287-1295.

    19. Kang ST, Leu JH, Wang HC, Chen LL, Kou GH, Lo CF. (2009) Polycistronic mRNAs and internal ribosome entry site elements (IRES) are widely used by white spot syndrome virus (WSSV) structural protein genes. Virology. 387:353-363.

    20. Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. (2009) Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. Proc Natl Acad Sci U S A. 103:14182-14187.

    21. Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. (2004) Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstreameffectors of mTOR kinase. J Virol. 78:11030-11039.

    22. Kapadia SB, Chisari FV. (2005) Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A. 102:2561-2566.

    23. Kieft JS. (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci. 33:274-283.

    24. Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. (2009) Whispovirus. Curr Top Microbiol Immunol. 328:197-227.

    25. Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y, Jing Y, Yang H, Chen R, Chang L, Zhang Y, Goto J, Onda H, Chen T, Wang MR, Lu Y, You H,Kwiatkowski D, Zhang H. (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical foraerobic glycolysis and tumor growth. Proc Natl Acad Sci U S A. 108:4129-4134.

    26. Ma XM, Blenis J. (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 10:307-318.

    27. Mathupala SP, Ko YH, Pedersen PL. (2009) Hexokinase-2 bound to mitochondria: cancer's stygian link to the "Warburg Effect" and a pivotal target for effective therapy. Semin Cancer Biol. 19:17-24.

    28. Moorman NJ, Shenk T. (2010) Rapamycin-resistant mTORC1 kinase activity is required for herpesvirus replication. J Virol. 84:5260-5269.

    29. Moorman NJ, Cristea IM, Terhune SS, Rout MP, Chait BT, Shenk T. (2008) Human cytomegalovirus protein UL38 inhibits host cell stress responses by antagonizing the tuberous sclerosis protein complex. Cell Host Microbe. 3:253-262.

    30. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD. (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol. 26:1179-1186.

    31. Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS, Hu Y, Ramdas L, Hu L, Keating MJ, Zhang W, Plunkett W, Huang P. (2006) Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol. 175:913-923.

    32. Peng L, Liang D, Tong W, Li J, Yuan Z. (2010) Hepatitis C virus NS5A activates the mammalian target of rapamycin (mTOR) pathway, contributingto cell survival by disrupting the interaction between FK506-binding protein 38 (FKBP38) andmTOR. J Biol Chem. 285:20870-20881.

    33. Saroj P. Mathupala, Young H. Ko, Peter L. Pedersen (2009) Hexokinase-2 bound to mitochondria: Cancer’s stygian link to the “Warburg effect” and a pivotal target for effective therapy. Semin Cancer Biol. 19:17-24.

    34. Shoshan-Barmatz V, Keinan N, Zaid H. (2008) Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr. 40:183-191.

    35. Shor B, Gibbons JJ, Abraham RT, Yu K. (2009) Targeting mTOR globally in cancer: thinking beyond rapamycin. Cell Cycle. 8:3831-3837.

    36. Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y, Jing Y, Yang H, Chen R, Chang L, Zhang Y, Goto J, Onda H, Chen T, Wang MR, Lu Y, You H, Kwiatkowski D, Zhang H. (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci U S A. 108:4129-4134.

    37. Teleman AA, Chen YW, Cohen SM. (2005) 4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. Genes Dev. 19:1844-1848.

    38. Vander Heiden MG, Cantley LC, Thompson CB. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science.324:1029-1033.

    39. Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD. (2011) Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog. 7:e1002124.

    40. Vazquez A, Liu J, Zhou Y, Oltvai ZN. (2010) Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst Biol. 4:58.

    41. Vazquez A, Oltvai ZN. (2011) Molecular Crowding Defines a Common Origin for the Warburg Effect in Proliferating Cells and the Lactate Threshold in Muscle Physiology. PLoS One. 6:e19538.

    42. Warburg O. The Metabolism of Tumors. (1930) Constable and Company, Ltd. London. 327 pp.

    43. Wang HC, Wang HC, Leu JH, Kou GH, Wang AH, Lo CF. (2007) Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol. 31:672-686.

    44. Wang KC, Kondo H, Hirono I, Aoki T. (2010) The Marsupenaeus japonicus voltage-dependent anion channel (MjVDAC) protein is involved in white spot syndrome virus (WSSV) pathogenesis. Fish Shellfish Immunol. 29:94-103.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE