| 研究生: |
鍾泓璟 Chung, Hung-Ching |
|---|---|
| 論文名稱: |
使用絕熱捷徑之極短、寬頻以及製程容忍度高的矽光子元件 Ultrashort, broadband and robust silicon photonics devices using shortcuts to adiabaticity. |
| 指導教授: |
曾碩彥
Tseng, Shuo-Yen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 絕熱捷徑 、快速類絕熱動態 (FAQUAD) 、絕熱參數 、3-dB耦合器 、極化選擇元件 |
| 外文關鍵詞: | Shortcuts to adiabaticity, Fast quasiadiabatic dynamics, Adiabatic parameter, Integrated optics devices, 3-dB coupler, Polarization-selective devices |
| 相關次數: | 點閱:265 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由量子-光學相似性,我們提出了由一種稱為絕熱捷徑(Shortcuts to adiabaticity)的技術設計的極短、製程容忍度高,寬頻的矽光子元件,而絕熱捷徑可以用來縮短傳統的絕熱元件結構,並保有絕熱元件寬頻、製程容忍度高的特性。其中包括寬頻、製程容忍度高的矽光子3-dB耦合器是利用一種基於不變量(Invariant)及優化絕熱(Optimization of adiabaticity)的絕熱捷徑來使元件的特性接近絕熱元件;我們也利用一種稱為快速類絕熱動態(Fast quasiadiabaitc dynamics)的技術來設計一個高效率的錐形波導跟一個極短、寬頻、製程容忍度高的極化轉換器錐形波導跟極化分離旋轉器,而快速類絕熱動態可以使絕熱系數均勻分布在元件中。這些矽光子元件具有良好的波長跟製程容忍度,而且所有元件都具有短的元件長度。
Based on the analogies between quantum mechanics and wave optics, we propose ultrashort and broadband silicon photonics devices designed by a technique called shortcuts to adiabaticity (STA) to speed up adiabatic passage. The devices include a robust silicon 3-dB coupler designed by the shortcuts to adiabaticity based on invariant and optimization of adiabaticity that engineer the system evolution to be as close to the adiabatic state as possible, an efficient taper waveguide, and an ultrashort and broadband polarization mode converter and PSR using the fast quasiadiabaticity dynamics (FAQUAD) protocaol. The FAQUAD protocol is used to homogeneously distribute the adiabaticity parameter over the length of the devices. These silicon photonics devices feature good robustness against wavelength and fabrication variations at the same time, and all devices have short devices lengths.
[1]. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel.Top. Quantum Electron. 11(1), 232–240 (2005).
[2]. Y. Zhang, S. Yang, A. E.-J. Lim, G.-Q. Lo, C. Galland, T.Baehr-Jones, and M. Hochberg, “A compact and low loss Y-junction for submicron silicon waveguide,” Opt. Express 21(1), 1310-1316 (2013).
[3]. H. Yun,W. Shi, Y. Wang, L. Chrostowski, N. A. F. Jaeger, “2 x 2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides,” Proe. SPIE 8915 (2013).
[4]. Yunfei Fu, Tong ye, Weijie Tang, and Tao Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2(3), A41–A44 (2014).
[5]. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
[6]. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138-140 (2005).
[7]. J. Wang, B. Niu, Z Sheng, A. Wu, X. Wang, S. Zou, M. Qi, and F. Gan, “Design of a SiO2 top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt. Express 22(4), 4137–4143 (2014).
[8]. A. F. Milton and W. Burns, “Mode coupling in optical waveguide horns,” IEEE J. Quantum Electron. 13, 828–835 (1977).
[9]. W. J. Stewart and J. D. Love, “Design limitation on tapers and couplers in single mode fibers,” Proc. 5th IOOC / 11th ECOC, 559–562 (1985).
[10]. R. R. A. Syms and P. G. Peall, “The digital optical switch: analogous directional coupler devices,” Opt. Commun. 69, 235–238 (1989).
[11]. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[12]. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling,” Opt. Express 13, 9381–9387 (2005).
[13]. N. Riesen and J. D. Love, “Design of mode-sorting asymmetric Y-junctions,” Appl. Opt. 51, 2778–2783 (2012).
[14]. S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22, 1036–1044 (2014).
[15]. S. Gross, N. Riesen, J. D. Love, and M. J. Withford, “Three-dimensional ultra-broadband integrated tapered mode multiplexers,” Laser Photon. Rev. 8, L81–L85 (2014).
[16]. A. Syahriar, V. M. Schneider, and S. Al-Bader, “The design of mode evolution couplers,” J. Lightwave Technol. 16, 1907–1914 (1998).
[17]. T. A. Ramadan, R. Scarmozzino, and R. M. Osgood, “Adiabatic couplers: design rules and optimization,” J. Lightwave Technol. 16, 277–283 (1998).
[18]. X. Sun, H.-C. Liu, and A. Yariv, “Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system,” Opt. Lett. 34, 280–282 (2009).
[19]. R. R. A. Syms, “The digital directional coupler: improved design,” IEEE Photon. Technol. Lett. 4, 1135–1138 (1992).
[20]. G. T. Paloczi, A. Eyal, and A. Yariv, “Wavelength-insensitive nonadiabatic mode evolution couplers,” IEEE Photon. Technol. Lett. 16, 515–517 (2004).
[21]. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser and Photon. Rev. 3, 243–261 (2009).
[22]. S.-Y. Tseng, “Counterdiabatic mode-evolution based coupled-waveguide devices,” Opt. Express 21, 21224–21235 (2013).
[23]. E. Torrontegui, S. Ibanez, S. Martinez-Garaot, M. Modugno, A. del Campo, D. Gury-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At. Mol. Opt. Phys. 62, 117–169 (2013).
[24]. S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, Th. Busch, and J. G. Muga, “Fast quasiadiabatic dynamics,” Phys. Rev. A 92(4), 043406 (2015).
[25]. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons.” Proceed. SPIE. 4987, 69-82 (2003).
[26]. J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020 (2009).
[27]. S. Chen, Y. Shi, S. He, and D. Dai, “Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon,” IEEE Photon. Technol. Lett. 28, 1874 (2016).
[28]. S. Chen, Y. Shi, S. He, D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic machzehnder switch with bent directional couplers,” Opt. Lett. 41, 836 (2016).
[29]. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine,“Low-voltage, compact, depletion-mode, silicon mach-zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[30]. K. Okamoto, Fundamentals of optical waveguides, 2nd ed. Academic Press, New York, 2006.
[31]. Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. F. Jaeger, and L. Chrostowski,“Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt. Express 23, 3795 (2015).
[32]. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightw. Technol. 13, 615 (1995).
[33]. K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, “Adiabatic and multimode interference couplers on silicon-on-insulator,” IEEE Photon. Technol. Lett. 18, 2287 (2006).
[34]. J. Xing, K. Xiong, H. Xu, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Silicon-on-insulator-based adiabatic splitter with simultaneous tapering of velocity and coupling,” Opt. Lett. 38, 2221 (2013).
[35]. K. Hassan, C. Durantin, V. Hugues, B. Szelag, and A. Gli´ere, “Robust silicon-on-insulator adiabatic splitter optimized by metamodeling,” Appl. Opt. 56, 2047 (2017).
[36]. W. –P. Huang, “Coupled-mode theory for optical waveguides: an overview.” J. Opt. Soc. Am. A11, 963-983 (1994).
[37]. M. Born and V. Fock, “Beweis des adiabatensatzes,” Z. Phys. 51(3-4), 165–169 (1928).
[38]. M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, “High fidelity quantum driving,” Nat. Phys. 8(2), 147–152 (2012).
[39]. J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. Yamamoto, T. Ohshima, J.Isoya, and D. Suter, “Experimental implementation of assisted quantum adiabatic passage in a single spin,” Phys. Rev. Lett. 110(24), 240501 (2013).
[40]. X. Chen and J. G. Muga, “Engineering of fast population transfer in three-level systems,” Phys. Rev. A 86,033405 (2012).
[41]. S.-Y. Tseng and Y.-W. Jhang, “Fast and robust beam coupling in a three waveguide directional coupler,” IEEE Photon. Technol. Lett. 25, 2478–2481 (2013).
[42]. X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).
[43]. A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14,093040 (2012).
[44]. D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).
[45]. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849-18859 (2014).
[46]. S.-Y. Tseng, “Robust coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett. 39(23), 6600-6603 (2014).
[47]. X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Guérin, and J. G. Muga, “Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors,” Phys. Rev. A 88, 033406 (2013).
[48]. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458–1473 (1969).
[49]. M. Ndong, G. Djotyan, A Ruschhaupt, and S. Guérin, “Robust coherent superposition of states by single-shot shaped pulse,” J. Phys. B: At. Mol. Opt. Phys. 48, 174007 (2015).
[50]. C.-P. Ho and S.-Y. Tseng, “Optimization of adiabaticity in coupled-waveguide devices using shortcuts to adiabaticity,” Opt. Lett., 40(21), 4831-4834 (2015).
[51]. FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com.
[52]. A. Syahriar, V. M. Schneider, and S. Al-Bader, “The design of mode evolution couplers,” J. Lightwave Technol. 16, 1907-1914 (1998).
[53]. Y. –F. Chiu, “Design and Simulation of Counterdiabatic Directional Coupler based on SOI”, NCKU, Master thesis (2014).
[54]. P.-H. Fu, Y.-C. Tu, and D.-H. Huang, “Broadband optical waveguide couplers with arbitrary coupling ratios designed using a genetic algorithm,” Opt. Express 24(26), 30547-30561 (2016).
[55]. T.-Y. Lin, F.-C. Hsiao, Y.-W. Jhang, C. Hu, and S.-Y. Tseng, “Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides,” Opt. Express 20(21), 24085–24092 (2012).
[56]. S.-Y. Tseng and X. Chen, “Engineering of fast mode conversion in multimode waveguides,” Opt. Lett. 37(24), 5118–5120 (2012).
[57]. S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39(8), 2306–2309 (2014).
[58]. X. Chen, R.-D. Wen, and S.-Y. Tseng, “Analysis of optical directional couplers using shortcuts to adiabaticity,” Opt. Express 24(16), 18322–18331 (2016)
[59]. T.-H. Pan and S.-Y. Tseng, “Short and robust silicon mode (de)multiplexers using shortcuts to adiabaticity,” Opt. Express 23(8), 10405–10412 (2015).
[60]. D. Guo and T. Chu, “Silicon mode (de)multiplexers with parameters optimized using shortcuts to adiabaticity,” Opt. Express 25(8), 9160–9170 (2017).
[61]. X. Chen, H.-W. Wang, Y. Ban, and S.-Y. Tseng, “Short-length and robust polarization rotators in periodically poled lithium niobate via shortcuts to adiabaticity,” Opt. Express 22(20), 24169–24178 (2014).
[62]. H. F. Zhou, J. F. Song, C. Li, H. J. Zhang, and P. G. Lo, “A library of ultra-compact multimode interference optical couplers on SOI, ” IEEE Photon. Technol. Lett. 25, 1149–1152 (2013).
[63]. S. Martínez-Garaot, J. G. Muga, and S.-Y. Tseng, “Shortcuts to adiabaticity in optical waveguides using fast quasiadiabatic dynamics,” Opt. Express 25(1), 159–167 (2017).
[64]. H.-C. Chung, K.-S. Lee, and S.-Y. Tseng, “Short and broadband silicon asymmetric Y-junction two-mode (de)multiplexer using fast quasiadiabatic dynamics,” Opt. Express 25(12), 13626–13634 (2017).
[65]. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[66]. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects,” Prog. Electromagnetics Res. 143, 773–819 (2013).
[67]. H. Yamada, Tao Chu, S. Ishida, Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photonics Tech. Lett. 17(3), 585–587 (2005).
[68]. Y. Fu, T. ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2(3), A41–A44 (2014).
[69]. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
[70]. Y. Fei, L. Zhang, T. Cao, Y. Cao, and S. Chen, “Ultracompact polarization splitter-rotator based on an asymmetric directional coupler,” Appl. Opt. 51(34), 8257–8261 (2012).
[71]. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20(18), 20021–20027 (2012).
[72]. J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
[73]. J. D. Love and N. Riesen, “Single, few-, and multimode Y-junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
[74]. H. Xu and Y. Shi, “Ultra-broadband silicon polarization splitter-rotator based on the multimode waveguide,” Opt. Express 25(15), 18485–18491 (2017).
[75]. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Express 41(10), 2346–2349 (2016).
[76]. J. Wang, B. Niu, Z. Sheng, A. Wu, X. Wang, S. Zou, M. Qi, and F. Gan, “Design of a SiO2 top-cladding and compact polarization splitter-rotator based on a rib directional coupler,” Opt. Express 22(4), 4137-4143 (2014).
[77]. D. Chen, X. Xiao, L. Wang, W. Liu, Q. Yang, and S. Yu, “Highly efficient silicon optical polarization rotators based on mode order conversions,” Opt. Lett. 41(5), 1070-1073 (2016).
[78]. H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A Eu-jin Lim, G. -Q. Lo, T. Baehrjones and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489-2496 (2014).
校內:2023-07-20公開