| 研究生: |
李政鴻 Lee, Cheng-Hung |
|---|---|
| 論文名稱: |
骨髓內支撐對近端肱骨骨折鋼板固定穩定度之探討 The Investigation of Intramedullary Support in Proximal Humerus Fracture Fixed with Plate |
| 指導教授: |
張志涵
Chang, Chih-Han |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 近端肱骨骨折 、鎖定式鋼板 、骨髓內支撐 |
| 外文關鍵詞: | proximal humerus fracture, locking plate, intramedullary support |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
肱骨近端骨折是發生在老年人的常見問題。大多數這些骨折,與骨質疏鬆症有關。對於簡單的骨質疏鬆肱骨近端骨折,非手術治療是一個選項,但是,它可能會導致變形癒合及肩膀僵硬,尤其是複雜性骨折 (三塊或四塊骨折)。如果我們採用鋼板內固定術,由於骨質疏鬆症,復位失敗和鋼板螺絲鬆脫,是一種常發現的不良後果。
本研究的目的是調查當近端肱骨骨折以鋼板固定並以腓骨髓內支撐是否能增進穩定度。首先,設計了四組人工骨鋸骨帶或不帶腓骨髓內支撐,並分別以不銹鋼傳統鋼板及鈦鎖定鋼板固定。這四組接受生物力學測試,檢查各組生物力學行為並比較之間的差異。第二,使用電腦斷層圖像採集生成三維有限元模型。使用這個模型與生物力學實驗做比較來驗證其機械性能。並比較腓骨髓內支撐的位置,髓內支撐使用可吸收固定板及不同作用力方向的生物力學行為的差異。最後,回顧性研究臨床病例並比較有無腓骨髓內支撐在影像學結果和臨床功能之間的差異。最終的推論是基於生物力學實驗,有限元分析和臨床案例分析的結果。
在生物力學實驗,設計了四組人造骨並製造骨折。組一及三,分別以傳統和鎖定鋼板固定,組二及四並分別額外的腓骨髓內支撐。四組做機械測試並相比較剛度和最大負荷。在傳統鋼板(191.19±10.11牛頓 /毫米)和鈦鎖定板(122.69±5.20牛頓/毫米)之間的剛度,有顯著性差異(P<0.05)結果,這是由於傳統鋼板材料屬不銹鋼其楊氏係數優於鈦鎖定板。添加腓骨髓內支撐後,傳統鋼板與帶有腓骨髓內支撐傳統鋼板(199.37±6.11牛頓/毫米)的剛度比較是不顯著的。相比之下,帶有腓骨髓內支撐鎖定鋼板的剛度(228.44±19.66牛頓/毫米)是單獨鎖定鋼板近兩倍,而且顯著高於所有其他組(P <0.05)。
這是由於彎曲變形量的變化。如果沒有髓內腓骨支撐,肱骨-鋼板建構體,主要是進行彎曲變形。有了髓內腓骨內側的支持,主要的壓縮應力可由鋼板及腓骨共享。鈦鎖定板具有接近腓骨剛度,所以其轉移的負載量至髓內腓骨會比不銹鋼傳統鋼板要更明顯。以此推斷,有了髓內腓骨支撐的不銹鋼傳統鋼板的彎曲效果較鈦鎖定板更強。
在最大負荷的結果,沒有髓內腓骨支撐不銹鋼傳統鋼板(622.68±52.46Ń),和鈦鎖定板(635.56±71.35Ñ)之間沒有顯著差異。這可能是由於鈦鎖定板高強度但顯著較低的剛度合併的結果所導致。有了髓內腓骨支撐的不銹鋼傳統鋼板(1516.94±137.63 N)是兩倍強於單獨傳統鋼板,以及單獨鎖定板(P <0.05)。有了髓內腓骨支撐鈦鎖定板(2218.64±89.27Ń),也三倍強於傳統鋼板以及單獨鎖定鋼板(P<0.05)。此外,髓內腓骨支撐鎖定板是近一個半強於髓內腓骨支撐傳統鋼板(P<0.05)。有了髓內腓骨支撐,減輕部分的彎曲力矩,增加了彎曲剛度的部分,從而降低鋼板最大應力。
在有限元分析中,建立了一個三維有限元模型基於CT圖像採集。然後我們使用有無髓內腓骨支撐鈦鎖定板做比較。結果顯示當有髓內腓骨支撐其剛度顯著增加。這個結果是與生物力學實驗趨勢一致。然後我們設計了另外兩個髓內腓骨支撐模型,分別為腓骨碰觸軟骨下骨和腓骨碰觸內側皮質。結果顯示無論髓內腓骨的位置,均沒有顯著的變化。當材料改變由腓骨改為可吸收骨板,發現它同樣能夠減低彎曲變形的力量,並減少鋼板的應力。另外當改變作用力的方向並分成內偏15度及外偏15度,發現外偏15度會造成剛度顯著減低。而外偏的作用力其實與實際旋轉肌作用的方向類似。如此正可解釋臨床只以鋼板固定高失敗的原因。 但縱使在外偏的作用力之下剛度會減少,當輔以髓內腓骨支撐,其剛度會增強三倍,此點在臨床應用非常重要。
在臨床病例分析,我們回顧性回朔肱骨近端骨折用鎖定鋼板固定的病例,並比較有無髓內腓骨支撐的臨床結果。除了四個無髓內腓骨支撐組的病人(兩個不癒合,一個股骨頭壞死,一個鋼板斷裂),所有骨折患者其骨折均癒合。比較肱骨頸幹角,有髓內腓骨內側支撐存在組,13例(92.9%)取得優良和1例(7.1%)取得了普通。在無髓內腓骨內側支撐組中,13例(65%)取得了優良,5例(25.0%)取得普通,並有3例(10%)結果不良。兩組之間的頸幹角放射結果(有髓內腓骨內側支撐,130.4±9.5度,無髓內腓骨內側支撐組118.5 ± 18.3度),有統計學顯著差異。在臨床評估,平均的Neer得分,有髓內腓骨內側支撐組是高於無髓內腓骨內側支撐組,這種差異有統計上顯著差異(有髓內腓骨內側支撐組,84.6 ± 8.7(平均值±標準差); 無髓內腓骨內側支撐組72.2 ± 12.2)。
基於這些結果,我們推斷鋼板治療肱骨近端骨折,如果有了髓內腓骨支撐,其剛度和最大負荷顯著增加。不管腓骨位置 (把腓骨更接近的內側皮質骨,和腓骨更接觸關節軟骨下骨)或不同材質髓內物,反彎矩作用將是更有效的。憑藉這些優勢,如果肱骨近端骨折固定鋼板並髓內腓骨支撐,影像學肱骨頸幹角得以維持而更能提升臨床功能。
Abstract
Proximal humeral fractures are a common problem in older people. The majority of these fractures are related to osteoporosis. Non-operative treatment is an option for simple proximal humerus fractures in the osteoporotic population; however, it may lead to malunion and also often results in stiffness of the shoulder in cases of complex (i.e., three-part and/or four-part) fractures. If surgical intervention with plate fixation is used, loss of reduction and implant failure due to osteoporosis is a common consequence.
The purpose of this research was to investigate the role of inlay grafts in proximal fractures fixed with a plate. First, four groups of sawbone, with gap to simulate fracture, were fixed with a conventional or locking plate as well as with or without inlay graft. The four groups underwent biomechanical testing. The biomechanical behaviors were examined and the differences between groups were compared. Second, a 3D finite element (FE) model were generated based on CT image acquisition. These models were validated and correlated with the biomechanical experiments. With these validated models, mechanical rationale of the construct was inferred. Finally, retrospective clinical cases were examined to compare the radiographic and clinical results between the groups with and without an inlay during surgery.
The final inference was based on the results of the biomechanical experiments, FE analysis and analysis of the clinical cases.
For the biomechanical experiment, four groups of sawbone with man-made fracture was designed. Groups 1 and 2 were fixed with a conventional plate while group 3 and 4 were fixed with a locking plate. Moreover, groups 2 and 4 were with an additional inlay fibula implantation. Four groups underwent mechanical testing and the stiffness and maximal load were compared. A significant difference (P<0.05) was identified between the stiffness of the conventional plate (191.19 ± 10.11 N/mm) and that of the locking plate (122.69 ± 5.20 N/mm). This was mostly due to the material property of the stainless conventional plate being superior to that of the titanium locking plate. After adding an inlay graft, the difference between the stiffness of the conventional plate with an inlay graft (199.37 ± 6.11 N/mm) and that of the conventional plate alone was not significant. In contrast, the stiffness of the locking plate with an inlay graft (228.44 ± 19.66 N/mm) was nearly twice that of the locking plate alone and was significantly greater than that of all other groups (P <0.05). This was probably due to the change in the bending deformation amount. Without the inlay, the bone-plate construct was mainly subjected to bending deformation. With medial support from the inlay, the loading was shared by the compression stress on the inlay. The stiffness of the titanium locking plate was closer to that provided by the bone peg inlay. This would shift the loading to the compressed inlay more than would be the case with the stainless steel conventional plate. It is inferred that the conventional plate construct has a stronger bending effect.
Without an inlay, there was no significant difference in maximal load between the conventional plate (622.68 ± 52.46 N) and the locking plate (635.56 ± 71.35 N). The insignificant difference in strength and maximum load between these two systems without an inlay may be due to the compensation effect of the greater strength of titanium on the significantly lower stiffness of the titanium locking system. With endosteal support, the conventional plate with an inlay graft (1516.94 ± 137.63 N) was twice as strong as the conventional plate, as well as the locking plate alone (P <0.05). The locking plate with an inlay graft (2218.64 ± 89.27 N) was also three times as strong as the conventional plate and the locking plate alone (P <0.05). Moreover, the locking plate with an inlay graft was nearly one and a half times stronger than the conventional plate with an inlay graft (P <0.05). With the inlay, the graft shares part of the bending moment, which increases the bending stiffness of the section and thus reduces the peak stress in the plate.
For the FE analysis, a 3D FE model was built based on CT image acquisition. Then, the model was validated with a comparison between the fracture fixed with a locking plate that was non-augmented or one that was augmented with an inlay fibula.
There was a significant increase in stiffness when the fibula was introduced. This result was comparable to that of the biomechanical experiment. Then, two other models created, one with an inlay graft that touched the subchondral bone and one with an inlay graft that touched the medial cortex. The results showed no significant change, no matter the graft position. When the material property of the fibula was changed to a bioabsorbable plate, it also decreased the stress in the locking plate, just like the fibula. Also, there was no significant change, no matter the bioabsorbable plate position. The direction of force was changed with medial deviated or lateral deviated 15 degree. Lateral deviated force resulted in significant decrease of stiffness. The direction of the lateral deviation was similar to the direction of pull of the rotator cuff. This could explain the high failure rate when proximal humerus fracture treated with locking plate only. But when inlay graft introduced, the stiffness increased three-folded, even in lateral deviating force.
In the analysis of the clinical cases, we retrospectively reviewed cases of proximal humerus fractures fixed with a locking plate and compared them to the groups with and without an inlay graft. All fractures were united at the final follow-up, except four cases in the non-augmented groups (two non-unions, one osteonecrosis, and one plate breakage). In a comparison of neck-shaft angle in the presence of inlay graft at the last follow-up, 13 cases (92.9%) were scored excellent and one (7.1%) was scored fair. In the non-augmented group, 13 cases (65%) were scored excellent, five (25.0%) were scored fair, and three (10%) were scored poor. There were statistically significant differences in the radiological outcome of the neck-shaft angle between the two groups (augmented group, 130.4 ± 9.5; nonaugmented group, 118.5 ± 18.3). In the clinical assessment, the average Neer’s score of the augmented group was higher than that of the non-augmented group, and this difference was statistically significant ( augmented group 84.6 ± 8.7 (average ± SD); non-augmented group, 72.2 ± 12.2 ).
Based on these results, this study inferred that when the proximal humerus fracture is treated with a plate, and if an inlay graft is introduced, then the stiffness and maximal load would increase significantly. When the graft was introduced in the medullary cannal, no matter its position, the anti-bending moment effect would be more efficient. With these advantages, the radiographic and clinical results would be better if the proximal humerus fracture were fixed with a plate augmented with an inlay graft.
Reference
1. C. M. Court-Brown, A. Garg, M. M. McQueen, The epidemiology of proximal humeral fractures. Acta Orthop Scand 72, 365-371 (2001).
2. D. Karataglis, S. I. Stavridis, G. Petsatodis, P. Papadopoulos, A. Christodoulou, New trends in fixation of proximal humeral fractures: a review. Injury 42, 330-338 (2011).
3. S. M. Sporer, J. N. Weinstein, K. J. Koval, The geographic incidence and treatment variation of common fractures of elderly patients. The Journal of the American Academy of Orthopaedic Surgeons 14, 246-255 (2006).
4. S. Brianza, M. Plecko, B. Gueorguiev, M. Windolf, K. Schwieger, Biomechanical evaluation of a new fixation technique for internal fixation of three-part proximal humerus fractures in a novel cadaveric model. Clinical biomechanics 25, 886-892 (2010).
5. M. Hessmann, F. Baumgaertel, H. Gehling, I. Klingelhoeffer, L. Gotzen, Plate fixation of proximal humeral fractures with indirect reduction: surgical technique and results utilizing three shoulder scores. Injury 30, 453-462 (1999).
6. R. A. Meier, P. Messmer, P. Regazzoni, W. Rothfischer, T. Gross, Unexpected high complication rate following internal fixation of unstable proximal humerus fractures with an angled blade plate. Journal of orthopaedic trauma 20, 253-260 (2006).
7. B. Kristiansen, S. W. Christensen, Plate fixation of proximal humeral fractures. Acta orthopaedica Scandinavica 57, 320-323 (1986).
8. K. C. Owsley, J. T. Gorczyca, Fracture displacement and screw cutout after open reduction and locked plate fixation of proximal humeral fractures [corrected]. The Journal of bone and joint surgery. American volume 90, 233-240 (2008).
9. J. Agudelo, M. Schurmann, P. Stahel, P. Helwig, S. J. Morgan, W. Zechel, C. Bahrs, A. Parekh, B. Ziran, A. Williams, W. Smith, Analysis of efficacy and failure in proximal humerus fractures treated with locking plates. Journal of orthopaedic trauma 21, 676-681 (2007).
10. L. A. Crosby, B. L. Norris, K. D. Dao, M. H. McGuire, Humeral shaft nonunions treated with fibular allograft and compression plating. American journal of orthopedics 29, 45-47 (2000).
11. A. P. Van Houwelingen, M. D. McKee, Treatment of osteopenic humeral shaft nonunion with compression plating, humeral cortical allograft struts, and bone grafting. Journal of orthopaedic trauma 19, 36-42 (2005).
12. J. J. P. Warner, J. G. Costouros, C. Gerber, in Rockwood & Green's Fractures in Adults. (2006), vol. 1, pp. 1163-1204.
13. D. C. Meyer, S. F. Fucentese, B. Koller, C. Gerber, Association of osteopenia of the humeral head with full-thickness rotator cuff tears. J Shoulder Elbow Surg 13, 333-337 (2004).
14. T. F. Schlegel, R. J. Hawkins, Displaced Proximal Humeral Fractures: Evaluation and Treatment. J Am Acad Orthop Surg 2, 54-78 (1994).
15. C. S. Neer, 2nd, Displaced proximal humeral fractures. II. Treatment of three-part and four-part displacement. J Bone Joint Surg Am 52, 1090-1103 (1970).
16. T. Lind, K. Kroner, J. Jensen, The epidemiology of fractures of the proximal humerus. Arch Orthop Trauma Surg 108, 285-287 (1989).
17. C. M. Court-Brown, A. Garg, M. M. McQueen, The translated two-part fracture of the proximal humerus. Epidemiology and outcome in the older patient. J Bone Joint Surg Br 83, 799-804 (2001).
18. C. M. Court-Brown, B. Caesar, Epidemiology of adult fractures: A review. Injury 37, 691-697 (2006).
19. C. M. Court-Brown, M. M. McQueen, Two-part fractures and fracture dislocations. Hand Clin 23, 397-414, v (2007).
20. C. Rajasekhar, P. S. Ray, M. S. Bhamra, Fixation of proximal humeral fractures with the Polarus nail. J Shoulder Elbow Surg 10, 7-10 (2001).
21. W. L. Healy, G. M. White, C. A. Mick, A. F. Brooker, Jr., A. J. Weiland, Nonunion of the humeral shaft. Clin Orthop Relat Res, 206-213 (1987).
22. A. Barquet, A. Fernandez, J. Luvizio, R. Masliah, A combined therapeutic protocol for aseptic nonunion of the humeral shaft: a report of 25 cases. J Trauma 29, 95-98 (1989).
23. K. P. Emmerson, J. L. Sher, A method of treatment of non-union of humeral shaft fractures following treatment by locked intramedullary nail: a report of three cases. Injury 29, 550-552 (1998).
24. A. S. Devnani, Simple approach to the management of aseptic non-union of the shaft of long bones. Singapore Med J 42, 20-25 (2001).
25. R. M. Crolla, L. S. de Vries, G. J. Clevers, Locked intramedullary nailing of humeral fractures. Injury 24, 403-406 (1993).
26. J. B. Jupiter, Complex non-union of the humeral diaphysis. Treatment with a medial approach, an anterior plate, and a vascularized fibular graft. J Bone Joint Surg Am 72, 701-707 (1990).
27. V. R. Patel, D. K. Menon, R. D. Pool, R. B. Simonis, Nonunion of the humerus after failure of surgical treatment. Management using the Ilizarov circular fixator. J Bone Joint Surg Br 82, 977-983 (2000).
28. M. D. McKee, M. A. Miranda, B. L. Riemer, R. B. Blasier, B. J. Redmond, S. H. Sims, J. P. Waddell, J. B. Jupiter, Management of humeral nonunion after the failure of locking intramedullary nails. J Orthop Trauma 10, 492-499 (1996).
29. N. Y. Otsuka, M. D. McKee, A. Liew, R. R. Richards, J. P. Waddell, J. N. Powell, E. H. Schemitsch, The effect of comorbidity and duration of nonunion on outcome after surgical treatment for nonunion of the humerus. J Shoulder Elbow Surg 7, 127-133 (1998).
30. D. Ring, B. H. Perey, J. B. Jupiter, The functional outcome of operative treatment of ununited fractures of the humeral diaphysis in older patients. J Bone Joint Surg Am 81, 177-190 (1999).
31. F. J. Hornicek, G. A. Zych, J. J. Hutson, T. I. Malinin, Salvage of humeral nonunions with onlay bone plate allograft augmentation. Clin Orthop Relat Res, 203-209 (2001).
32. A. Kumar, S. A. Sadiq, Non-union of the humeral shaft treated by internal fixation. Int Orthop 26, 214-216 (2002).
33. R. K. Marti, C. C. Verheyen, P. P. Besselaar, Humeral shaft nonunion: evaluation of uniform surgical repair in fifty-one patients. J Orthop Trauma 16, 108-115 (2002).
34. I. F. Rubel, P. Kloen, D. Campbell, M. Schwartz, A. Liew, E. Myers, D. L. Helfet, Open reduction and internal fixation of humeral nonunions : a biomechanical and clinical study. J Bone Joint Surg Am 84-A, 1315-1322 (2002).
35. E. Gautier, C. Sommer, Guidelines for the clinical application of the LCP. Injury 34 Suppl 2, B63-76 (2003).
36. H. P. Chandler, D. King, R. Limbird, A. Hedley, J. McCarthy, B. Penenberg, K. Danylchuk, The use of cortical allograft struts for fixation of fractures associated with well-fixed total joint prostheses. Semin Arthroplasty 4, 99-107 (1993).
37. W. C. Head, T. I. Malinin, T. H. Mallory, R. H. Emerson, Jr., Onlay cortical allografting for the femur. Orthop Clin North Am 29, 307-312 (1998).
38. F. S. Haddad, C. P. Duncan, D. J. Berry, D. G. Lewallen, A. E. Gross, H. P. Chandler, Periprosthetic femoral fractures around well-fixed implants: use of cortical onlay allografts with or without a plate. J Bone Joint Surg Am 84-A, 945-950 (2002).
39. J. Sanchez-Sotelo, S. O'Driscoll, B. F. Morrey, Periprosthetic humeral fractures after total elbow arthroplasty: treatment with implant revision and strut allograft augmentation. J Bone Joint Surg Am 84-A, 1642-1650 (2002).
40. A. E. Gross, P. K. Wong, C. R. Hutchison, A. E. King, Onlay cortical strut grafting in revision arthroplasty of the hip. J Arthroplasty 18, 104-106 (2003).
41. J. W. Wang, L. H. Weng, Treatment of distal femoral nonunion with internal fixation, cortical allograft struts, and autogenous bone-grafting. J Bone Joint Surg Am 85-A, 436-440 (2003).
42. J. M. Bjorkenheim, J. Pajarinen, V. Savolainen, Internal fixation of proximal humeral fractures with a locking compression plate: a retrospective evaluation of 72 patients followed for a minimum of 1 year. Acta Orthop Scand 75, 741-745 (2004).
43. F. Fankhauser, C. Boldin, G. Schippinger, C. Haunschmid, R. Szyszkowitz, A new locking plate for unstable fractures of the proximal humerus. Clin Orthop Relat Res, 176-181 (2005).
44. M. Plecko, A. Kraus, Internal fixation of proximal humerus fractures using the locking proximal humerus plate. Oper Orthop Traumatol 17, 25-50 (2005).
45. C. Hessler, U. Schmucker, G. Matthes, A. Ekkernkamp, R. Gutschow, C. Eggers, [Results after treatment of instable fractures of the proximal humerus using a fixed-angle plate]. Unfallchirurg 109, 867-870, 872-864 (2006).
46. A. Koukakis, C. D. Apostolou, T. Taneja, D. S. Korres, A. Amini, Fixation of proximal humerus fractures using the PHILOS plate: early experience. Clin Orthop Relat Res 442, 115-120 (2006).
47. M. J. Gardner, Y. Weil, J. U. Barker, B. T. Kelly, D. L. Helfet, D. G. Lorich, The importance of medial support in locked plating of proximal humerus fractures. J Orthop Trauma 21, 185-191 (2007).
48. E. V. Geiger, M. Maier, A. Kelm, S. Wutzler, C. Seebach, I. Marzi, Functional outcome and complications following PHILOS plate fixation in proximal humeral fractures. Acta Orthop Traumatol Turc 44, 1-6 (2010).
49. C. W. Lee, S. J. Shin, Prognostic factors for unstable proximal humeral fractures treated with locking-plate fixation. J Shoulder Elbow Surg 18, 83-88 (2009).
50. J. Lescheid, R. Zdero, S. Shah, P. R. Kuzyk, E. H. Schemitsch, The biomechanics of locked plating for repairing proximal humerus fractures with or without medial cortical support. The Journal of trauma 69, 1235-1242 (2010).
51. D. Krappinger, N. Bizzotto, S. Riedmann, C. Kammerlander, C. Hengg, F. S. Kralinger, Predicting failure after surgical fixation of proximal humerus fractures. Injury 42, 1283-1288 (2011).
52. F. Hardeman, P. Bollars, M. Donnelly, J. Bellemans, S. Nijs, Predictive factors for functional outcome and failure in angular stable osteosynthesis of the proximal humerus. Injury 43, 153-158 (2012).
53. M. El-Rich, P. J. Arnoux, E. Wagnac, C. Brunet, C. E. Aubin, Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions. Journal of biomechanics 42, 1252-1262 (2009)
54. S. J. Ferguson, U. P. Wyss, D. R. Pichora, Finite element stress analysis of a hybrid fracture fixation plate. Medical engineering & physics 18, 241-250 (1996)
55. P. Paavolainen, J. M. Bjorkenheim, P. Slatis, P. Paukku, Operative treatment of severe proximal humeral fractures. Acta orthopaedica Scandinavica 54, 374-379 (1983)
56. C. S. Neer, 2nd, Displaced proximal humeral fractures. I. Classification and evaluation. The Journal of bone and joint surgery. American volume 52, 1077-1089 (1970)
Appendix
Neer's Score56
校內:2016-07-25公開