| 研究生: |
盧冠廷 Lu, Kuan-Ting |
|---|---|
| 論文名稱: |
應用Fluent模式分析物料堆置場室內化之風蝕揚塵排放減量 Estimation of dust emission reduction by wind erosion for indoorized storage piles by using Fluent |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 風蝕揚塵 、Fluent 、室內化防治措施 |
| 外文關鍵詞: | wind erosion, Fluent, indoorized storage piles |
| 相關次數: | 點閱:138 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
風蝕揚塵一直為環境中一個重要的議題,而工業揚塵目前有的防治措施為實體擋風牆/孔隙擋風牆、化學穩定劑、定時灑水等等。本研究主要探討室內化防治措施(料棚)。
本研究主要參考USEPA之AP42中計算工業風蝕揚塵方法,藉由ANSYS Fluent流體力學軟體,研究料棚之防塵效率以及其對鄰近風場影響。藉由某工廠所提供原物料堆置場區資料,建置原物料堆置場模型,利用梧棲氣象站資料作為ANSYS Fluent流體力學軟體之輸入參數資料,包含:風速資料、風向資料等。計算出在無防塵措施、現有防塵措施以及室內化防塵措施(料棚)之排放量,比較現有防塵措施與料棚之防塵效率。
煤礦平均含水率為7.96%,依據FeÂcan(1998)可得人工灑水下之臨界摩擦風速為1.29m/s。再捲揚分析中,煤礦之PM2.5/TSP、 PM10/TSP分別為25.4%、70.4%作為本研究粒徑乘數(Kn)。在模擬孔隙擋風牆中,參考Cong et al. (2011)使用Fluent模式之孔隙壓降邊界條件(Porous Jump Boundary Condition)之方法,依擋風牆孔隙資料,藉由不同風速下模擬,得到壓降公式∆P=-(3.0559v^2+1.1296v),做為本研究模擬參數。
透過模擬不同之條件,得到在無防治措施之排放量為588.84t;人工灑水之排放量為82.09t和防塵效率為86.1%;現有防治措施之排放量為132.3t和防塵效率為77.5%;人工灑水加現有防治措施之排放量為10.9t和防塵效率為98.1%;室內化防治措施之排放量為34.93t和防塵效率為94.1%;人工灑水加室內化防治措施之排放量為3.8t和防塵效率為99.4%。人工灑水加室內化防治措施之TSP排放量為3.8(t/year),PM10排放量2.68(t/year),PM2.5排放量為0.97(t/year)。
Wind erosion dust is an important issue in the environment because it will directly endanger air quality and human body. The current prevention measures for industrial dust have fence/porous fence, chemical stabilizer, watering, etc. This study mainly discusses a new type of prevention measures: indoorized storage piles.
This study mainly refers to the calculation of industrial wind erosion dust method in USEPA's AP42 and use ANSYS Fluent model to calculate the emission and the efficiency for indoorized storage piles.
By simulating different conditions, the emission is 588.84(t/year) for case of no control measure; the emission is 132.3(t/year) and the efficiency is 77.5% for case of porous fence; the emission is 34.93(t/year) and the efficiency is 94.1% for case of indoorized storage piles; the emission is 82.09(t/year) and the efficiency is 86.1% for watering; the emission is 10.9(t/year) and the efficiency is 98.1% for case of porous fence with watering; the emission is 3.8(t/year) and the efficiency is 99.4% for case of indoorized storage piles with watering.
ANSYS 17.0 Fluent Theory Guide, ANSYS, 2016.
Badr, T. & Harion, J. L., Effect of aggregate storage piles configuration on dust emissions. , Atmospheric Environment, 41(2), 360-368., 2007
Bagnold, R. A., The physics of blown sand and desert dunes. Courier Corporation. , 2012.
Bauer, B.O., Sherman, D.J., Nordstrom, K.F., Gares, P.A., Aeolian transport measurement and prediction across a beach and dune at Castroville Califonia. Coastal Dunes: Forms and Process 39-55., 1990.
B. E. Launder and D. B. Spalding. Lectures in Mathematical Models of Turbulence. Academic Press, London, England. , 1972.
Blanco-Canqui, H., & Lal, R., Principles of soil conservation and management. Springer Science & Business Media, 2008.
Borrmann, S., & Jaenicke, R., Wind tunnel experiments on the resuspension of sub-micrometer particles from a sand surface. Atmospheric Environment (1967), 21(9), 1891-1898. , 1987.
Chamberlain, A.C., Roughness Length of Sea, Sand, and Snow. Boundary-Layer Meteorology, 25(4), 405-409., 1983.
Cong, X. C., Cao, S. Q., Chen, Z. L., Peng, S. T., & Yang, S. L., Impact of the installation scenario of porous fences on wind-blown particle emission in open coal yards. Atmospheric environment, 45(30), 5247-5253., 2011.
Cong, X. C., Yang, S. L., Cao, S. Q., Chen, Z. L., Dai, M. X., & Peng, S. T., Effect of aggregate stockpile configuration and layout on dust emissions in an open yard. Applied Mathematical Modelling, 36(11), 5482-5491. , 2012.
Counihan, J., Adiabatic Atmospheric Boundary-Layers - Review and Analysis of Data from Period 1880-1972. Atmospheric Environment, 9(10), 871-905., 1975.
Davenport, A.G., The relationship of wind structure to wind loading, in Processing of the Symposium on Wind Effects on Building and Structures. National Physical Laboratory, 1, 53-102., 1965.
Dong, Z.B., Liu, X.P., Wang, H.T., Zhao, A.G., Wang, X.M., The flux profile of a blowing sand cloud: a wind tunnel investigation. Geomorphology, 49(3-4), 219-230., 2003.
Fairchild, C. I., & Tillery, M. I., Wind tunnel measurements of the resuspension of ideal particles. Atmospheric Environment (1967), 16(2), 229-238., 1982.
Fécan, F., Marticorena, B., & Bergametti, G., Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. In Annales Geophysicae (Vol. 17, No. 1, pp. 149-157). Springer-Verlag., 1998, December.
Gillette, D. A., Fryrear, D. W., Gill, T. E., Ley, T., Cahill, T. A., & Gearhart, E. A., Relation of vertical flux of particles smaller than 10 μm to total aeolian horizontal mass flux at Owens Lake. Journal of Geophysical Research: Atmospheres (1984–2012), 102(D22), 26009-26015., 1997.
Kawamura, R., Study of sand movement by wind. Univ. of Tokyo, Inst. of Sci. and Technol., 1951.
Leys, J. N., Soil crusts: their e€ect on wind erosion, Research Note 1/90, Soil Conservation Service of New SouthWales, Australia. , 1990.
MacKenzie, H. J. and Pearson, H.W., `Preliminary studies on the potential use of algae in the stabilization of sand wastes and wind blow situations', British Journal of Phycology, 14, 126. , 1979.
Nicholson, K. W., Wind tunnel experiments on the resuspension of particulate material. Atmospheric Environment. Part A. General Topics, 27(2), 181-188., 1993.
Nicholson, K. W., A review of particle resuspension. Atmospheric Environment (1967), 22(12), 2639-2651., 1988.
Novak, L., Bizjan, B., Pražnikar, J., Horvat, B., Orbanić, A., & Širok, B., Numerical Modeling of Dust Lifting from a Complex-Geometry Industrial Stockpile. Strojniski Vestnik/Journal of Mechanical Engineering, 61(11). , 2015.
Ravi, S., & D'Odorico, P., A field‐scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical Research Letters, 32(21). , 2005.
Ravi, S., Zobeck, T. M., Over, T. M., Okin, G. S., & D'ODORICO, P. A. O. L. O., On the effect of moisture bonding forces in air‐dry soils on threshold friction velocity of wind erosion. Sedimentology, 53(3), 597-609. , 2006.
Roney, J. A., & White, B. R., Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel. Atmospheric Environment, 40(40), 7668-7685. , 2006.
Torano, J. A., Rodriguez, R., Diego, I., Rivas, J. M., & Pelegry, A., Influence of the pile shape on wind erosion CFD emission simulation. Applied mathematical modelling, 31(11), 2487-2502., 2007.
Toraño, J., Torno, S., Diego, I., Menendez, M., and Gent, M., Dust emission calculations in open storage piles protected by means of barriers, CFD and experimental tests. Environ. Fluid Mech., 493-507. 2009, 9.
Torno, S., Toraño, J., Diego, I., Menéndez, M., Gent, M., & Velasco, J., CFD simulation with multiphase flows in porous media and open mineral storage pile. WIT Transactions on Engineering Sciences, 63, 421-430., 2009.
Turpin, C., & Harion, J. L., Numerical modelling of flow structures over an industrial site: effect of the surrounding buildings on dust emissions. Global NEST Journal, 12(1), 40-45, 2010.
Verteeg, H.K.,Malalasekera, W., An Introduction to Computational Fluid Dynamics : The Finite Volume Method Approach.2nd ed.England: Pearson Education. , 2007.
Wanot, J., Computational fluid dynamics methods in ship design. R&D projects from Germany. 1966.
Williams, J. D., Dobrowolski, J. P.,West, N. E. and Gillette, D. A.., `Microphytic crust in uences on wind erosion', Transactions of the American Society of Agricultural Engineers, 38, 131-137., 1995.
Xu, Y., Mustafa, M. Y., Calay, R. K., & Sørensen, B. S., Numerical simulation of non-normal wind load on porous fences. Energy Procedia, 112, 382-389., 2017
Zhang, X., Chen, W., Ma, C., & Zhan, S., Modeling the effect of humidity on the threshold friction velocity of coal particles.Atmospheric environment, 56, 154-160., 2012.
王福軍,計算流體力學分析-CFD軟件原理與應用,清華大學出版社,2004
林文印、顏有利、陳志傑、吳義林、張章堂、賴全裕,河川揚塵對空氣品質影響預防評估計畫,100年度環保署/國科會空污防制科研合作計畫,NSC100-EPA-F-007-002,2012。
林志剛,結合WRF及Fluent模式建置濁水溪揚塵預報系統,國立成功大學環境工程所碩士論文,2015。
戚啟勛、陳孟青,台灣之氣候,中央氣象局出版,1993。
劉彥甫,應用Fluent模式針對雲林麥寮離島工業區揚塵與海鹽之收集效率研究,國立成功大學環境工程所碩士論文,2012。
謝正展,低層建築物表面風壓之實驗研究,國立中央大學土木工程研究所碩士論文,2002。