| 研究生: |
陳怡婷 Chen, Yi-Ting |
|---|---|
| 論文名稱: |
考慮供水與蓄水目標之水庫理論最佳限水策略推導 Derivation of the analytical optimum hedging rules of a reservoir for considering water supply and carryover storage targets |
| 指導教授: |
蕭政宗
Shiau, Jenq-tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 水庫營運 、限水策略 、可利用水量 、不確定性 |
| 外文關鍵詞: | reservoir operation, hedging rules, water availability, uncertainty |
| 相關次數: | 點閱:133 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究目的為推導供水水庫考慮供水與蓄水二營運目標之最佳限水策略理論解,水庫營運目標以常態化偏離供水與蓄水目標值之權重和為代表,所推導得之最佳限水策略為水庫可利用水量(定義為水庫蓄水量加入流量並扣除蒸發量)的線性函數,因此可利用其二端點來定義限水策略,本文稱為起始可利用水量(SWA)及終止可利用水量(EWA)。水庫供水與蓄水目標何者較易達成會使起始可利用水量位於不同位置,本文稱供水目標較易於達成的限水策略為二點法第一類最佳限水策略,而第二類最佳限水策略則適用於蓄水目標較易達成的狀況。由於可利用水量包括未知的入流量,因此用於決定水庫放水量隱含不確定性,在已知水庫蓄水量的條件下,本文以入流量的機率分佈配合前所推導之理論限水策略來量化限水的不確定性。本文以石門水庫及其1964~2007年入流量資料為例說明不同參數值的選定對限水策略及限水效果的影響,並探討在不同水庫蓄水量、不同月份之限水不確定性,本文所建立之理論最佳限水策略及不確定性分析可提供水庫營運者建立水庫營運策略及有效管理水資源。
This study aims to derive the analytical optimal hedging rules of a reservoir for simultaneously considering the water supply and carryover storage targets. Weighted sum of normalized water-demand and carryover-storage targets is employed as an objective function to derive the reservoir optimal hedging rules. The derived optimal hedging rules are linearly varied with water availability, which is defined as the reservoir storage plus inflows and minus evaporation losses. Thus the optimal reservoir hedging can be expressed in terms of two end points, called the starting water availability (SWA) and ending water availability (EWA). The value of starting water availability depends upon which target is easily to satisfy. In this study, two-point type I hedging rules are preferable to the water-supply target, while two-point type II hedging rules are preferable to the carryover storage target. In addition, unknown future reservoir inflow involved in water availability leads to uncertainty of reservoir releases. In this study, this uncertainty is quantified by inflow distribution and derived optimal hedging rules. The proposed methodology is applied to the Shihmen reservoir associated with 1964-2007 inflow records. Effects of various combinations of parameters on hedging rules are explored in this study. Hedging uncertainty for various reservoir storages for each calendar month are also discussed. The results show that the derived optimal hedging rules associated with the uncertainty analysis provide useful information for efficient water-resources management.
參考文獻
1. 鍾世英、孫光偉,「外匯避險策略」,金錢文化(1996)
2. 吳永猛、黃建森、謝明瑞、蔡豐清,「金融市場與機構管理」,國立空中大學(2003)
3. 張宮熊、邱馨慧、吳貞和,「國際財務管理」,麥格羅.希爾(1995)
4. 顏錫銘,「國際財務管理」,華泰文化事業公司 (1999)
5. 經濟部水利處水利規劃試驗所,「新店溪水源利用引水工程可行性規劃總報告」(1999)
6. 經濟部水利署水利規劃試驗所,「翡翠及石門水庫共同用水調度機制規劃」(2007)
7. 經濟部水利署,「水利第17期」(2007)
8. 蕭政宗,「乾旱時期水庫供水策略與缺水影響分析」,農業工程學報,
第四十六卷,第二期,第54-74頁(2000)
9. 李皓志、蕭政宗,「考慮不同替代入流量之水庫限水策略」,農業工程學報,第四十九卷,第一期,第61-77頁(2003)
10. Ajami, N. K., Duan, Q., and Sorooshian, S., “An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction,” Water Resources Research, Vol. 43, W01403, doi: 10.1029/2005WR004745 (2007).
11. Ajami, N. K., Hornberger, G. M., and Sunding, D. L., “Sustainable water resource management under hydrological uncertainty,” Water Resources Research, Vol. 44, W11406, doi: 10.1029/2007WR006736 (2008).
12. Bayazit, M., and Unal, E., “Effects of hedging on reservoir performance,” Water Resources Research, Vol. 26, No. 4, pp. 713-719 (1990).
13. Bower, B. T., Hufschmidt, M. M., and Reedy, W. W., “Operating procedures: Their role in the design of water-resources systems by simulation analyses,” in Design of Water-Resource Systems, edited by A. Maass et al., Harvard Univ. Press, Cambridge, Mass, pp. 443– 458 (1962).
14. Celeste, A. B., Suzuki, K., and Kadota, A., “Integrating long- and short-term reservoir operation models via stochastic and deterministic optimization: case study in Japan,” Journal of Water Resources Planning and Management, ASCE, Vol. 134, No. 5, pp. 440-448 (2008).
15. Draper, A. J., “Implicit stochastic optimization with limited foresight for reservoir systems,” Ph.D. diss., Univ. of Calif., Davis (2001).
16. Draper, A. J., and Lund, J. R., “Optimal hedging and carryover storage value,” Journal of Water Resources Planning and Management, ASCE, Vol. 130, No. 1, pp. 83-87 (2004).
17. Gessford, J., and Karlin, S., “Optimal policy for hydroelectric operations, in Studies on the Mathematical Theory of Inventory and Production,” Stanford Univ. Press, Stanford, Calif, pp. 179– 200 (1958).
18. Georgakakos, A. P., Yao, H., Mullusky, M., and Georgakakos, K. P., “Impacts of climate variability on the operational forecast and management of the Upper Des Moines River basin,” Water Resources Research, Vol. 34, No. 4, pp. 799– 821(1998).
19. Hashimoto, T., Stedinger, J. R., and Loucks, D. P., “Reliability, resiliency, and vulnerability criteria for water resources system performance evaluation,” Water Resources Research, Vol. 18, No. 1, pp. 14-20 (1982).
20. Huang, W. C., and Yuan, L. C., “A drought early warning system on real-time multireservoir operations,” Water Resources Research, 40, W060401, doi: 10.1029/ 2003WR002910 (2004).
21. Huang, W. C., and Chou, C. C., “Drought early warning system in reservoir operation: Theory and practice,” Water Resources Research, 41, W11406, doi: 10.1029/ 2004WR003830 (2005).
22. Lund, J. R., and Reed, R. U., “Drought water rationing and transferable rations,” Journal of Water Resources Planning and Management, ASCE, Vol. 121, No. 6, pp. 429-437 (1995).
23. Masse, P., Les Reserves et la Regulation de l’Avenir Dans la vie Economique, Avenir Determine (in French), Hermann and Cie, Paris, vol I (1946).
24. Moy, W. S., Cohon, J. L., and ReVelle, C. S., “A programming model for analysis of reliability, resilience, and vulnerability of water supply reservoir,” Water Resources Research, Vol. 22, No. 4, pp.489-498 (1986).
25. Neelakantan, T. R., and Pundarikanthan, N. V., “Hedging rule optimization for water supply reservoir system,” Water Resources Management, Vol. 13, No. 6, pp. 409-426 (1999).
26. Neelakantan, T. R., and Pundarikanthan, N. V., “Neural network-based simulation-optimization model for reservoir operation,” Journal of Water Resources Planning and Management, ASCE, Vol. 126, No. 2, pp. 57-64 (2000).
27. ReVelle, C., Joeres, E., and Kirby, W., “The linear decision rule in reservoir management and design. I. Development of the stochastic model,” Water Resources Research, Vol. 5, No. 4, pp. 767-777 (1969).
28. Shih, J. S., and ReVelle, C., “Water-supply operations during drought: Continuous hedging rule,” Journal of Water Resources Planning and Management, ASCE, Vol. 120, No. 5, pp. 613-629 (1994).
29. Shih, J. S., and ReVelle, C., “Water-supply operations during drought: A discrete hedging rule,” European Journal of Operational Research, Vol. 82, pp. 163-175 (1995).
30. Shiau, J. T., “Water release policy effects on the shortage characteristic for the Shihmen Reservoir System during drought,” Water Resources Management, Vol. 17, No. 6, pp. 463-480 (2003).
31. Shiau, J. T., and Lee, H. C., “Derivation of optimal hedging rules for a water-supply reservoir through compromise programming,” Water Resources Management, Vol. 19, No. 2, pp. 111-132 (2005).
32. Srinivasan, K., and Philipose, M. C., “Evaluation and selection of hedging policies using stochastic reservoir simulation,” Water Resources Management, Vol. 10, No. 3, pp. 163-188 (1996).
33. Srinivasan, K., and Philipose, M. C., “Effect of hedging on over-year reservoir performance,” Water Resources Management, Vol. 12, No. 2, pp. 95– 120 (1998).
34. Yao, H., and Georgakakos, A., “Assessment of Folsom Lake response to
historical and potential future climate scenarios 2. Reservoir management, “Journal of Hydrologic Engineering, Vol. 249, pp.176–196, doi: 10.1016/S0022-1694(01)00418-8 (2001).
35. You, J.-Y., and Cai, X., “Hedging rule for reservoir operations: 1. A theoretical analysis,” Water Resources Research, Vol.44, W01415, doi: 10.1029/ 2006WR005481 (2008a).
36. You, J.-Y., and Cai, X., “Hedging rule for reservoir operations: 2. A numerical model,” Water Resources Research, Vol.44, W01416, doi: 10.1029/ 2006WR005482 (2008b).