簡易檢索 / 詳目顯示

研究生: 黃柏欽
Huang, Bo-Chin
論文名稱: 連鑄連軋4043鋁合金破壞機制研究:拉伸疲勞、高溫與熱疲勞、顆粒沖蝕磨耗特性
Study on Fracture Mechanisms of 4043 Al alloy Manufactured through Continuous Casting Direct Rolling Process: Tensile Fatigue, High Temperature and Thermal Fatigue, Particle Erosion Characteristics
指導教授: 洪飛義
Hung, Fei-Yi
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 153
中文關鍵詞: 4043鋁合金連鑄連軋製程拉伸疲勞熱疲勞顆粒沖蝕磨耗晶出Si沖蝕誘發相變態
外文關鍵詞: 4043 Al alloy, continuous casting direct rolling process, tensile fatigue, thermal fatigue, solid particle erosion wear, Si precipitates, erosion-induced phase transformation
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract III 誌謝 XV 總目錄 XVI 表目錄 XIX 圖目錄 XX 第一章 前言 1 第二章 文獻回顧 5 2.1 連鑄連軋製程介紹 5 2.2 鋁合金分類介紹 6 2.3 鋁矽合金介紹 7 2.3.1 鋁矽合金特性與應用 7 2.3.2 矽元素在鋁矽合金扮演的角色 8 2.3.3 亞共晶鋁矽合金顯微結構探討 8 2.4 單軸循環拉伸加載-卸載試驗 9 2.5 循環加熱-冷卻試驗 11 2.6 顆粒沖蝕磨耗應用特性與機制 12 2.6.1 磨耗機制介紹 12 2.6.2 顆粒沖蝕磨耗機制 12 2.7 研究動機 14 第三章 實驗步驟與方法 22 3.1 實驗設計與架構 22 3.2 微觀組織特性與相組成分析 24 3.3 硬度試驗與機械性質分析 24 3.4 高解析式電子微探儀元素散佈分析 25 3.5 穿透式電子顯微鏡解析 25 3.6 單軸循環拉伸加載-卸載試驗 26 3.7 高溫與循環加熱-冷卻試驗 26 3.8 顆粒沖蝕磨耗試驗 27 3.9 顆粒沖蝕磨耗誘發相變態 28 3.10 材料破壞分析 28 第四章 單軸循環拉伸加載-卸載對連鑄連軋4043鋁合金之影響 43 4.1 概述 43 4.2 微觀組織特性與相組成分析 43 4.3 單軸循環拉伸加載-卸載試驗對機械性質之影響 45 4.4 單軸循環拉伸加載-卸載之材料破壞特性 46 第五章 高溫與熱循環對連鑄連軋4043鋁合金之效應 57 5.1 概述 57 5.2 微觀組織特性與相組成分析 58 5.3 高溫與循環加熱-冷卻之基地組織演化特性 61 5.4 高溫與循環加熱-冷卻對機械性質之影響 62 5.5 高溫工作環境下之破壞分析 63 5.6 持續高溫與循環加熱-冷卻之共晶矽結晶行為特性 65 第六章 不同後處理連鑄連軋4043鋁合金之顆粒沖蝕磨耗特性 85 6.1 概述 85 6.2 材料應用特性說明 85 6.3 微觀組織特性與後處理基地組織演化 86 6.4 拉伸機械性質與破壞機理解析 87 6.5 顆粒沖蝕磨耗特性探討 89 6.6 顆粒沖蝕磨耗誘發表面相變態機制 92 第七章 結論 109 參考文獻 112

    [1] R. Echigo, H. Yoshida, and T. Mochizuki, “Temperature equalization by the radiative converter for a slab in continuous casting direct rolling,” JSME international journal. Ser. 2, Fluids engineering, heat transfer, power, combustion, thermophysical properties, vol. 31, no. 3, pp. 545-552, 1988.
    [2] M. Kase, K. Matsuzuka, H. Takahashi, H. Oba, and O. Hirata, “Continuous casting direct rolling technology at Nippon Steel's Sakai Works,” Steel Times, vol. 213, no. 6, p. 268, 1985.
    [3] Y. Maehara, K. Nakai, K. Yasumoto, and T. Mishima, “Hot cracking of low alloy steels in simulated continuous casting-direct rolling process,” Transactions of the Iron and Steel Institute of Japan, vol. 28, no. 12, pp. 1021-1027, 1988.
    [4] T. Zhou, P. Zhang, K. Kuuskman, E. Cerilli, S.-H. Cho, D. Burella, and H. S. Zurob, “Development of medium-to-high carbon hot-rolled steel strip on a thin slab casting direct strip production complex,” Ironmaking & Steelmaking, vol. 45, no. 7, pp. 603-610, 2018.
    [5] T. Zhou, R. J. O’Malley, H. S. Zurob, M. Subramanian, S.-H. Cho, and P. Zhang, “Control of upstream austenite grain coarsening during the thin-slab cast direct-rolling (TSCDR) process,” Metals, vol. 9, no. 2, p. 158, 2019.
    [6] A. Muntin, “Advanced technology of combined thin slab continuous casting and steel strip hot rolling,” Metallurgist, vol. 62, no. 9-10, pp. 900-910, 2019.
    [7] R. Jiang, W. Zhao, L. Zhang, X. Li, and S. Guan, “Microstructure and corrosion resistance of commercial purity aluminum sheet manufactured by continuous casting direct rolling after ultrasonic melt pre-treatment,” Journal of Materials Research and Technology, vol. 22, pp. 1522-1532, 2023.
    [8] J. G. Kaufman, Introduction to aluminum alloys and tempers: ASM International: Almere, The Netherlands, 2000.
    [9] J. R. Starke, and A. Edgar, “Heat-treatable aluminum alloys,” Aluminum Alloys-Contemporary Research and Applications: Contemporary Research and Applications, vol. 31, pp. 35-63, 2012.
    [10] M. Tisza, and I. Czinege, “Comparative study of the application of steels and aluminium in lightweight production of automotive parts,” International Journal of Lightweight Materials and Manufacture, vol. 1, no. 4, pp. 229-238, 2018.
    [11] T. Ludwig, E. S. Dæhlen, P. Schaffer, and L. Arnberg, “The effect of Ca and P interaction on the Al–Si eutectic in a hypoeutectic Al–Si alloy,” Journal of alloys and compounds, vol. 586, pp. 180-190, 2014.
    [12] O. Uzun, T. Karaaslan, M. Gogebakan, and M. Keskin, “Hardness and microstructural characteristics of rapidly solidified Al–8–16 wt.% Si alloys,” Journal of Alloys and Compounds, vol. 376, no. 1-2, pp. 149-157, 2004.
    [13] M. Javidani, and D. Larouche, “Application of cast Al–Si alloys in internal combustion engine components,” International Materials Reviews, vol. 59, no. 3, pp. 132-158, 2014.
    [14] F. Xia, X. Gao, M. Liang, Y. Guo, J. Li, Z. Yang, J. Wang, and L. Zhang, “Effect of thermal exposure on microstructure and high-temperature fatigue life of Al-Si piston alloys,” Journal of Materials Research and Technology, vol. 9, no. 6, pp. 12926-12935, 2020.
    [15] J. Wang, B. Wang, and L. Huang, “Structural evolution of Al–8% Si hypoeutectic alloy by ultrasonic processing,” Journal of materials science & technology, vol. 33, no. 11, pp. 1235-1239, 2017.
    [16] G. Niu, Y. Wang, L. Zhu, J. Ye, and J. Mao, “Fluidity of casting Al–Si series alloys for automotive light-weighting: a systematic review,” Materials Science and Technology, vol. 38, no. 13, pp. 902-911, 2022.
    [17] S.-S. Li, X. Yue, Q.-Y. Li, H.-L. Peng, B.-X. Dong, T.-S. Liu, H.-Y. Yang, J. Fan, S.-L. Shu, F. Qiu, and Q.-C. Jiang “Development and applications of aluminum alloys for aerospace industry,” Journal of Materials Research and Technology, vol. 27, pp. 944-983, 2023.
    [18] S. Hegde, and K. N. Prabhu, “Modification of eutectic silicon in Al–Si alloys,” Journal of materials science, vol. 43, pp. 3009-3027, 2008.
    [19] C. Ladeiro, F. Nunes, M. Trindade, and J. Costa, “Effect of aging heat treatment in an Al-4008 produced by liquid metal printing,” U. Porto Journal of Engineering, vol. 10, no. 1, pp. 45-58, 2024.
    [20] J. Murray, and A. McAlister, “The Al-Si (aluminum-silicon) system,” Bulletin of alloy phase diagrams, vol. 5, no. 1, pp. 74-84, 1984.
    [21] J. Asensio-Lozano, and G. Vander Voort, “The Al-Si Phase Diagram,” Tech notes, vol. 5, p. 5, 2009.
    [22] C. Hernandez, J. M. H. Ramírez, and R. Mackay, "Al–Si Alloys," Springer: Cham, Switzerland, 2017.
    [23] T. Haga, S. Imamura, and H. Fuse, “Fluidity investigation of pure Al and Al-Si alloys,” Materials, vol. 14, no. 18, p. 5372, 2021.
    [24] M. Elmadagli, T. Perry, and A. Alpas, “A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys,” Wear, vol. 262, no. 1-2, pp. 79-92, 2007.
    [25] W. Shi, B. Gao, G. Tu, and S. Li, “Effect of Nd on microstructure and wear resistance of hypereutectic Al–20% Si alloy,” Journal of Alloys and Compounds, vol. 508, no. 2, pp. 480-485, 2010.
    [26] A. Dahle, K. Nogita, S. McDonald, C. Dinnis, and L. Lu, “Eutectic modification and microstructure development in Al–Si Alloys,” Materials Science and Engineering: A, vol. 413, pp. 243-248, 2005.
    [27] H. Liao, M. Zhang, Q. Wu, H. Wang, and G. Sun, “Refinement of eutectic grains by combined addition of strontium and boron in near-eutectic Al–Si alloys,” Scripta Materialia, vol. 57, no. 12, pp. 1121-1124, 2007.
    [28] B.-C. Huang, and F.-Y. Hung, “Effect of high temperature and thermal cycle of 4043 Al alloy manufactured through continuous casting direct rolling,” Materials, vol. 16, no. 22, p. 7176, 2023.
    [29] B.-C. Huang, and F.-Y. Hung, “Effect of tensile loading–unloading cyclic plastic deformation on 4043 aluminum alloy manufactured through CCDR,” Materials Today Communications, vol. 34, p. 104979, 2023.
    [30] H. Feng, S. Yu, Y. Li, and L. Gong, “Effect of ultrasonic treatment on microstructures of hypereutectic Al–Si alloy,” Journal of materials processing technology, vol. 208, no. 1-3, pp. 330-335, 2008.
    [31] K. Gall, N. Yang, M. Horstemeyer, D. L. McDowell, and J. Fan, “The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy,” Metallurgical and Materials Transactions A, vol. 30, pp. 3079-3088, 1999.
    [32] V.-D. Le, N. Saintier, F. Morel, D. Bellett, and P. Osmond, “Investigation of the effect of porosity on the high cycle fatigue behaviour of cast Al-Si alloy by X-ray micro-tomography,” International Journal of Fatigue, vol. 106, pp. 24-37, 2018.
    [33] S. K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, “Key issues in cyclic plastic deformation: experimentation,” Mechanics of materials, vol. 43, no. 11, pp. 705-720, 2011.
    [34] S. Dong, Q. Yu, Y. Jiang, J. Dong, F. Wang, L. Jin, and W. Ding, “Characteristic cyclic plastic deformation in ZK60 magnesium alloy,” International Journal of Plasticity, vol. 91, pp. 25-47, 2017.
    [35] K. Sasaki, “Low cycle thermal fatigue of aluminum alloy cylinder head in consideration of changing metrology microstructure,” Procedia Engineering, vol. 2, no. 1, pp. 767-776, 2010.
    [36] Z. Sajedi, R. Casati, M. C. Poletti, R. Wang, F. Iranshahi, and M. Vedani, “Comparative thermal fatigue behavior of AlSi7Mg alloy produced by L-PBF and sand casting,” International Journal of Fatigue, vol. 152, p. 106424, 2021.
    [37] G. Rong, S. Sha, B. Li, Z. Chen, and Z. Zhang, “Experimental investigation on physical and mechanical properties of granite subjected to cyclic heating and liquid nitrogen cooling,” Rock Mechanics and Rock Engineering, vol. 54, pp. 2383-2403, 2021.
    [38] Q. Liu, Z. Qian, and Z. Wu, “Micro/macro physical and mechanical variation of red sandstone subjected to cyclic heating and cooling: an experimental study,” Bulletin of Engineering Geology and the Environment, vol. 78, pp. 1485-1499, 2019.
    [39] H.-M. Lin, T.-S. Lui, and L.-H. Chen, “Effect of silicon content on intergranular embrittlement of ferritic spheroidal graphite cast iron suffered from cyclic heating,” Materials transactions, vol. 44, no. 1, pp. 173-180, 2003.
    [40] H.-M. Lin, T.-S. Lui, and L.-H. Chen, “Effect of microstructural refinement on ductility deterioration of high silicon ferritic spheroidal graphite cast iron caused by cyclic heating,” Materials Transactions, vol. 44, no. 6, pp. 1209-1218, 2003.
    [41] B. Bhushan, Introduction to tribology, 2nd ed. John Wiley & Sons, Ltd.: New York, NY, USA, 2013.
    [42] G. Tilly, "Erosion caused by impact of solid particles," Treatise on Materials Science & Technology, vol. 13, pp. 287-319, 1979.
    [43] G. Sheldon, and I. Finnie, “The mechanism of material removal in the erosive cutting of brittle materials,” Journal of Engineering for Industry, vol. 88, no 4, pp. 393-399, 1966.
    [44] S. Söderberg, S. Hogmark, and H. Swahn, “Mechanisms of material removal during erosion of a stainless steel,” ASLE transactions, vol. 26, no. 2, pp. 161-172, 1983.
    [45] I. Hutchings, and P. Shipway, Tribology: friction and wear of engineering materials: Butterworth-heinemann, Oxford, UK, 2017.
    [46] M. A. Chowdhury, U. K. Debnath, D. M. Nuruzzaman, and M. M. Islam, “Experimental analysis of aluminum alloy under solid particle erosion process,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 230, no. 12, pp. 1516-1541, 2016.
    [47] D. Jiang, Q. Zhang, M. Zhao, H. Xia, S. Wang, and Y. Li, “Effects of welds distribution and high-low temperature humidity alternating aging on sealing performance of weld-bonded stainless steel structures,” Journal of Manufacturing Processes, vol. 48, pp. 77-85, 2019.
    [48] Q. Zheng, L. Zhang, H. Jiang, J. Zhao, and J. He, “Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys,” Journal of Materials Science & Technology, vol. 47, pp. 142-151, 2020.
    [49] T. Hosch, and R. Napolitano, “The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al–Si eutectic alloys,” Materials Science and Engineering: A, vol. 528, no. 1, pp. 226-232, 2010.
    [50] K. Antipov, I. Benarieb, Y. Oglodkova, and A. Rudchenko, “Structure and properties of industrial semifinished products from a weldable corrosion-resistant aluminum alloy of the Al–Mg–Si–Cu System,” Inorganic Materials: Applied Research, vol. 13, no. 5, pp. 1200-1208, 2022.
    [51] X. Ding, D. Li, Q. Zhang, H. Ma, J. Yang, and S. Fan, “Effect of ambient pressure on bead shape, microstructure and corrosion behavior of 4043 Al alloy fabricated by laser coaxial wire feeding additive manufacturing in vacuum environment,” Optics & Laser Technology, vol. 153, p. 108242, 2022.
    [52] Q. Miao, D. Wu, D. Chai, Y. Zhan, G. Bi, F. Niu, and G. Ma, “Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing,” Materials & Design, vol. 186, p. 108205, 2020.
    [53] C. He, J. Wei, Y. Li, Z. Zhang, N. Tian, G. Qin, and L. Zuo, “Improvement of microstructure and fatigue performance of wire-arc additive manufactured 4043 aluminum alloy assisted by interlayer friction stir processing,” Journal of Materials Science & Technology, vol. 133, pp. 183-194, 2023.
    [54] G. L. Knapp, M. Gussev, A. Shyam, T. Feldhausen, and A. Plotkowski, “Microstructure, deformation and fracture mechanisms in Al-4043 alloy produced by laser hot-wire additive manufacturing,” Additive Manufacturing, vol. 59, p. 103150, 2022.
    [55] A. G. Ortega, L. C. Galvan, M. Salem, K. Moussaoui, S. Segonds, S. Rouquette, and F. Deschaux-Beaume, “Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a Cold Metal Transfer process,” Science and Technology of Welding and Joining, vol. 24, no. 6, pp. 538-547, 2019.
    [56] Z. Chen, H. Kang, G. Fan, J. Li, Y. Lu, J. Jie, Y. Zhang, T. Li, X. Jian, and T. Wang, “Grain refinement of hypoeutectic Al-Si alloys with B,” Acta Materialia, vol. 120, pp. 168-178, 2016.
    [57] L. Bolzoni, M. Xia, and N. H. Babu, “Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei,” Scientific Reports, vol. 6, no. 1, p. 39554, 2016.
    [58] K. Zhang, X. Bian, Y. Li, Y. Liu, C. Yang, and X. Zhao, “Chemical diffusion characteristics of Al–Si alloy melts under a transverse magnetic field,” Physics Letters A, vol. 379, no. 22-23, pp. 1464-1466, 2015.
    [59] Z. Zhang, J. Li, H. Yue, J. Zhang, and T. Li, “Microstructure evolution of A356 alloy under compound field,” Journal of Alloys and Compounds, vol. 484, no. 1-2, pp. 458-462, 2009.
    [60] X. Zhen, Z. Zhihao, H. Dongyue, C. Qingqiang, and L. Zhanzhi, “Effects of Si content and aging temperature on wear resistance of surfacing layers welded with 4043 aluminum welding wires,” Rare Metal Materials and Engineering, vol. 45, no. 1, pp. 71-74, 2016.
    [61] N. Coniglio, C. E. Cross, I. Dörfel, and W. Österle, “Phase formation in 6060/4043 aluminum weld solidification,” Materials Science and Engineering: A, vol. 517, no. 1-2, pp. 321-327, 2009.
    [62] Z. Zhihao, X. Zhen, W. Gaosong, and C. Jianzhong, “Microstructure and property of welding joint weld with micro-Alloying 4043 welding wire,” Acta Metall Sin, vol. 49, no. 8, pp. 946-952, 2013.
    [63] E. Ogris, A. Wahlen, H. Lüchinger, and P. Uggowitzer, “On the silicon spheroidization in Al–Si alloys,” Journal of Light Metals, vol. 2, no. 4, pp. 263-269, 2002.
    [64] K. Nakano, and K. Yamagishi, “Impact of carbon tax increase on product prices in Japan,” Energies, vol. 14, no. 7, p. 1986, 2021.
    [65] A. Haagensen, J. M. Ashraf, and T. A. Nilssen, “The Impact of ESG Factors on Financial Performance: Evidence from the Aluminum and Iron & Steel Industries,” Master's thesis, NTNU, 2023.
    [66] F.-Y. Hung, L.-H. Chen, and T.-S. Lui, “Phase transformation of an austempered ductile iron during an erosion process,” Materials transactions, vol. 45, no. 10, pp. 2981-2986, 2004.
    [67] S. Joseph, and S. Kumar, “A systematic investigation of fracture mechanisms in Al–Si based eutectic alloy—Effect of Si modification,” Materials Science and Engineering: A, vol. 588, pp. 111-124, 2013.
    [68] G.-h. Zhang, J.-x. Zhang, B.-c. Li, and C. Wei, “Characterization of tensile fracture in heavily alloyed Al-Si piston alloy,” Progress in natural science: Materials International, vol. 21, no. 5, pp. 380-385, 2011.
    [69] A. Gorny, J. Manickaraj, Z. Cai, and S. Shankar, “Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate,” Journal of Alloys and Compounds, vol. 577, pp. 103-124, 2013.
    [70] Y. Li, M. Yang, K. Li, C. Ma, T. Yang, J. Wang, Q. Lu, Y. Zhang, G. Li, and S. Zhang, “In-situ study of effects of heat treatments and loading methods on fracture behaviors of a cast Al–Si alloy,” Materials Today Communications, vol. 28, p. 102680, 2021.
    [71] X. Wang, F. Li, T. Xu, S. Ma, C. Da, and M. Wang, “Mechanical behavior and microstructural evolution during cyclic tensile loading-unloading deformation in metastable Ti–10V–2Fe–3Al alloy,” Materials Science and Engineering: A, vol. 835, p. 142663, 2022.
    [72] X. Zhang, H. Andrä, S. Harjo, W. Gong, T. Kawasaki, A. Lutz, and M. Lahres, “Quantifying internal strains, stresses, and dislocation density in additively manufactured AlSi10Mg during loading-unloading-reloading deformation,” Materials & Design, vol. 198, p. 109339, 2021.
    [73] K. Bhanu Sankara Rao, and B. Raj, “Fatigue testing: thermal and thermomechanical,” Encyclopedia of Materials: Science and Technology, pp. 2999-3001, 2001.
    [74] C. Mo, J. Zhao, and D. Zhang, “Real-time measurement of mechanical behavior of granite during heating–cooling cycle: a mineralogical perspective,” Rock Mechanics and Rock Engineering, vol. 55, no. 7, pp. 4403-4422, 2022.
    [75] G. Qian, L. Sun, H. Chen, Z. Wang, K. Wei, and W. Ma, “Enhancing impurities removal from Si by controlling crystal growth in directional solidification refining with Al–Si alloy,” Journal of Alloys and Compounds, vol. 820, p. 153300, 2020.
    [76] Y. Nishi, Y. Kang, and K. Morita, “Control of Si crystal growth during solidification of Si-Al melt,” Materials transactions, vol. 51, no. 7, pp. 1227-1230, 2010.
    [77] J.-G. Jung, S.-H. Lee, J.-M. Lee, Y.-H. Cho, S.-H. Kim, and W.-H. Yoon, “Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment,” Materials Science and Engineering: A, vol. 669, pp. 187-195, 2016.
    [78] H. Becker, T. Bergh, P. E. Vullum, A. Leineweber, and Y. Li, “Effect of Mn and cooling rates on α-, β-and δ-Al–Fe–Si intermetallic phase formation in a secondary Al–Si alloy,” Materialia, vol. 5, p. 100198, 2019.
    [79] C. Basak, and N. H. Babu, “Morphological changes and segregation of β-Al9Fe2Si2 phase: A perspective from better recyclability of cast Al-Si alloys,” Materials & Design, vol. 108, pp. 277-288, 2016.
    [80] N. Abu-Dheir, M. Khraisheh, K. Saito, and A. Male, “Silicon morphology modification in the eutectic Al–Si alloy using mechanical mold vibration,” Materials Science and Engineering: A, vol. 393, no. 1-2, pp. 109-117, 2005.
    [81] Q. Li, Y. Zhu, S. Zhao, Y. Lan, D. Liu, G. Jian, Q. Zhang, and H. Zhou, “Influences of Fe, Mn and Y additions on microstructure and mechanical properties of hypoeutectic Al–7% Si alloy,” Intermetallics, vol. 120, p. 106768, 2020.
    [82] J. Li, X. Cheng, Z. Li, X. Zong, S.-Q. Zhang, and H.-M. Wang, “Improving the mechanical properties of Al-5Si-1Cu-Mg aluminum alloy produced by laser additive manufacturing with post-process heat treatments,” Materials Science and Engineering: A, vol. 735, pp. 408-417, 2018.
    [83] B. Zhang, X. Li, and D. Li, “Assessment of thermal expansion coefficient for pure metals,” Calphad, vol. 43, pp. 7-17, 2013.
    [84] H. Watanabe, N. Yamada, and M. Okaji, “Linear thermal expansion coefficient of silicon from 293 to 1000 K,” International journal of thermophysics, vol. 25, no. 1, pp. 221-236, 2004.
    [85] Y. Yang, S.-Y. Zhong, Z. Chen, M. Wang, N. Ma, and H. Wang, “Effect of Cr content and heat-treatment on the high temperature strength of eutectic Al–Si alloys,” Journal of Alloys and Compounds, vol. 647, pp. 63-69, 2015.
    [86] X. Cao, and J. Campbell, “Morphology of β-Al5FeSi phase in Al-Si cast alloys,” Materials Transactions, vol. 47, no. 5, pp. 1303-1312, 2006.
    [87] L. Ceschini, A. Morri, A. Morri, S. Toschi, S. Johansson, and S. Seifeddine, “Effect of microstructure and overaging on the tensile behavior at room and elevated temperature of C355-T6 cast aluminum alloy,” Materials & design, vol. 83, pp. 626-634, 2015.
    [88] V. Firouzdor, M. Rajabi, E. Nejati, and F. Khomamizadeh, “Effect of microstructural constituents on the thermal fatigue life of A319 aluminum alloy,” Materials Science and Engineering: A, vol. 454, pp. 528-535, 2007.
    [89] B. Zhao, S. Xing, A. Shan, G. Yan, and X. Jiang, “Influence of La addition on Fe-rich intermetallic phases formation and mechanical properties of Al-7Si-4Cu-0.35 Mg-0.2 Fe alloys prepared by squeeze casting,” Intermetallics, vol. 153, p. 107783, 2023.
    [90] C. Phongphisutthinan, H. Tezuka, E. Kobayashi, and T. Sato, "Evolution of Fragmented Fe-Intermetallic Compounds in the Semi-Solid State of Al-Mg-Si-Fe Alloys by Deformation Semi-Solid Forming Process." pp. 1851-1856. In ICAA13 Pittsburgh: Proceedings of the 13th International Conference on Aluminum Alloys, Pittsburgh, PA, USA, 3–7 June 2012; Springer: Berlin/Heidelberg, Germany, 2016.
    [91] X. Jiao, C. Liu, J. Wang, Z. Guo, J. Wang, Z. Wang, J. Gao, and S. Xiong, “On the characterization of microstructure and fracture in a high-pressure die-casting Al-10 wt% Si alloy,” Progress in Natural Science: Materials International, vol. 30, no. 2, pp. 221-228, 2020.
    [92] M. Riestra, E. Ghassemali, T. Bogdanoff, and S. Seifeddine, “Interactive effects of grain refinement, eutectic modification and solidification rate on tensile properties of Al-10Si alloy,” Materials Science and Engineering: A, vol. 703, pp. 270-279, 2017.
    [93] K. Wang, H. Jiang, Q. Wang, B. Ye, and W. Ding, “Nanoparticle-induced nucleation of eutectic silicon in hypoeutectic Al-Si alloy,” Materials Characterization, vol. 117, pp. 41-46, 2016.
    [94] K. Y. Kim, J. S. Shin, and D. W. Park, "Separation of Pure Silicon from Al-Si Alloy Melts." Materials Science Forum 2014, vol. 783-786, pp. 186-191.
    [95] J. Chen, C. Liu, F. Wen, Q. Zhou, H. Zhao, and R. Guan, “Effect of microalloying and tensile deformation on the internal structures of eutectic Si phase in Al-Si alloy,” Journal of Materials Research and Technology, vol. 9, no. 3, pp. 4682-4691, 2020.
    [96] F. Cai, X. Huang, Q. Yang, and D. Nagy, “Effect of microstructure on the solid particle erosion properties of ni plating,” Journal of materials engineering and performance, vol. 18, pp. 305-311, 2009.

    無法下載圖示 校內:2028-09-19公開
    校外:2028-09-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE