簡易檢索 / 詳目顯示

研究生: 徐嘉鴻
Hsu, Chia-Hung
論文名稱: 以電紡絲法製備生物可分解性聚羥基丁酸酯纖維膜
Preparation of biodegradable polyhydroxybutyrate fibers via electrospinning
指導教授: 王紀
wang, chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 139
中文關鍵詞: 電壓電紡絲
外文關鍵詞: electrospinning, voltage
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    聚羥基丁酸酯(PHB) 為一對環境無害之天然性生物可分解(相容性)之材料。在醫藥及生物材料上有廣泛的應用性,具發展潛能可取代現今一些塑膠材料。

    本研究所得纖維主要是利用氯仿及氯仿/N,N-二甲基甲醯胺共溶劑溶解PHB形成均勻溶液後以電紡絲法來製備,但因氯仿具揮發性,會造成不銹鋼針頭前端之Taylor cone乾涸形成膠狀物中斷電紡絲製程,因此可利用氮氣攜帶飽和氯仿蒸汽包覆Taylor cone的方式加以克服此難題。

    本研究主要探討操作變數及溶液性質對電紡絲製程中圓椎高度、液柱長度、液柱直徑與纖維直徑變化的影響。

    實驗發現溶液流量(Q)、操作電壓(V)及溶液黏度(η0)的改變對纖維直徑(df)及液柱直徑(dj)存在著一重要的scaling law關係分別為:dj~V^-0.56、df~V^-0.61, dj~Q^0.61、df~Q^0.33, dj~η0^0.04、df~η0^0.36。

    在固定溶液性質時改變操作變數(Q與V)進行電紡絲所得纖維直徑及液柱直徑遵循以下關係:df~dj^0.54。

    Abstract

    Poly(3-hydroxybutyric acid) (PHB) is a natural biodegradable plastic with biocompatibility and without any toxic byproducts. It is used mainly in biomaterials for medical applications and has a high possibility to replace conventional non-biodegradable materials.

    The PHB fibers were electrospun from PHB/CF or PHB/CF+DMF solutions. Since CF has a high volatility, the Taylor cone at the tip of the needle will become gel. We used N2 as a carrying gas for bringing the cone to overcome this problem.

    In the study, we used PHB/CF+DMF solutions to discuss the effects of the processing variables and solution properties on the morphologies of cone height, jet length and jet/fiber diameters.

    Some scaling laws between the jet diameter(dj), fiber diameter(df) and the flow rate(Q), applied voltage(V) and solution viscosity(η0) were derived and expressed as follows: dj~V^-0.56、df~V^-0.61, dj~Q^0.61、df~Q^0.33, dj~η0^0.04、df~η0^0.36.

    Regardless of the processing variables, dj and df were found to follow a master curve: df~dj^0.54, at a given solution.

    目錄 摘要..........................................................................................i Abstract....................................................................................ii 致謝.........................................................................................iii 目錄.........................................................................................iv 表目錄....................................................................................vii 圖目錄....................................................................................viii 符號........................................................................................xii 一、前言..................................................................................1 二、簡介..................................................................................2 2.1 電紡絲模式......................................................................2 2.2 電紡絲實驗之觀察..........................................................3 2.2.1 Cone和Jet之形態.........................................................3 2.2.2 Jet甩動之過程.............................................................3 2.2.3 纖維之形態.................................................................3 三、文獻回顧.......................................................................9 3.1 聚羥基丁酸酯(poly-3-hydroxybutyrate , PHB)簡介......9 3.1.1 PHB的介紹...............................................................9 3.1.2 PHB的性質...............................................................10 3.1.3 PHB相關之電紡絲...................................................10 3.2 影響電紡絲的相關因素...............................................12 3.3 纖維的設計與收集........................................................16 3.3.1方向性纖維的收集....................................................16 3.3.2 不同的電紡絲機構...................................................17 3.4 紡口阻塞問題之解決....................................................18 四、理論................................................................................63 4.1 纖維雙折射率差之測量................................................63 4.2 高分子黏彈性................................................................63 五、實驗................................................................................66 5.1 實驗藥品........................................................................66 5.2 實驗材料及儀器............................................................66 5.2.1量測溶液性質之儀器................................................66 5.2.2電紡絲儀器及材料....................................................67 5.2.3光學儀器....................................................................67 5.3 溶液製備........................................................................68 5.4 電紡絲之實驗流程圖....................................................69 5.5 CF飽和蒸汽的產生.......................................................70 5.6 電紡絲實驗步驟............................................................70 六、結果與討論....................................................................71 6.1 PHB溶液性質.................................................................71 6.1.1黏度對導電度的影響................................................71 6.1.2溶劑對導電度之影響................................................71 6.1.3濃度對表面張力的影響............................................71 6.1.4溶劑對表面張力的影響............................................72 6.2 PHB/chloroform流變性質...............................................72 6.2.1濃度效應...................................................................72 6.2.2流變儀測試所遭遇問題............................................74 6.3 電紡絲纖維之變因探討................................................75 6.3.1 PHB/CF+DMF系統電紡可操作範圍......................76 6.3.2操作電壓對電紡絲之影響.......................................76 6.3.3溶液流量對電紡絲之影響.......................................79 6.3.4溶液黏度對電紡絲之影響.......................................80 6.3.5收集方式對電紡絲成形纖維之影響.......................82 七、結論.............................................................................131 7.1 溶液性質.....................................................................131 7.2 改變參數對電紡絲之影響.........................................131 7.3 收集方式對電紡絲成形纖維之影響.........................131 八、參考文獻.....................................................................132 附錄.....................................................................................138 自述.....................................................................................139

    參考文獻

    [1] J. Hao and X. Deng, “Semi-interpenetrating networks of bacterialpoly(3-hydroxybutyrate) with

    net-poly(ethylene glycol)” Polymer, 42,4091 (2001).
    [2] 黃怡菁,“生物可分解材料澱粉與PHB(poly-3- hydroxy butyrate)合膠之製備及性質研

    究”,中國文化大學材料科學與製造研究所碩士論文 (2004) 。
    [3] M. Lemoigne, Ann. Inst. Past, 39, 144 (1925).
    [4] K. Sombatmankhong, N. Scanchavanakit, P. Pavasant, P. Supaphol, “Bone scaffolds from

    electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

    andtheir blend.” polymer, 48,1419 (2007).
    [5] C. H. Rivard, C. Chaput, S. Rhalmi, A. Selmani, Ann Chir, 50, 651 (1996).
    [6] B. Nebe, C. Forster, H. Pommerenke, G. Fulda, D. Behrend, U. Bernewski, Biomaterials, 22,

    2425 (2001).
    [7] L.M.W.K. Gunaratne, R.A. Shanks, G. Amarasinghe, “Thermal history effects on crystallization

    and melting of poly(3-hydroxybutyrate).” Thermochim. Acta 423,127 (2004).
    [8] C. S. Ha, W. J. Cho, Prog. Polym. Sci. 27,759 (2002).
    [9] T. Ikejima, Y. Inoue, “Crystallization behavior and environmental biodegradability of the blend

    films of poly(3-hydroxybutyric acid) with chitin and chitosan Carbohydrate.” polymers, 41, 351

    (2000).
    [10] H. Sato, R. Murakami, A. Padermshoke, F. Hirose, K. Senda, I. Noda and Y. Ozaki,

    “Infrared spectroscopy studies of CH…O hydrogenbondings and thermal behavior of

    biodegradable poly(hydroxyalkanoate).” Macromolecules, 37, 7203 (2004).
    [11] T. Ikejima, Y. Inoue, “Crystallization behavior and environmental biodegradability of the blend

    films of poly(3-hydroxybutyric acid) with chitin and chitosan, Carbohydrate.” Polymer, 41,351

    (2000).
    [12] K. Sombatmankhong, Orawan Suwantong, Suchadaw Aleetorn Cheepsawat, Pitt Supaphol, “

    Electrospun fiber mats of poly(3-hydroxybutyrate), Poly(3-hydroxybutyrate-co-3-hydroxy
    valerate) , and their blends.” J. Polym. Sci., Part:B, Polym. Phys. , 44, 2923 (2006).
    [13] M. Bognitzki, W. Czado, T. Frese, A. Schapor, M. Hellwig, M. Steinhart, A. Greiner, J. H.

    Wendorff, “Nanostructured fibers via electrospinning.” Adv. Mater. 13, 70 (2001).
    [14] J. S. Choi, S. W. Lee, L. Jeong, S. H. Bae, B. C. Min, J. H. Youk, W. H. Park, “Effect of

    organosoluble salts on the nanofibrous structure ofelectrospun poly(3-hydroxybutyrate-co-3-

    hydroxyvalerate).” Int. J. Biol. Macromol. 34, 249 (2004).
    [15] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship

    of electrospun bioabsorbable nanofiber membranes.” Polymer; 43, 4403 (2002).
    [16] I.S. Lee, O.H. Kwon, W. Meng, I.K. Kang, Y. Ito, Macromol Res. 12, 374 (2004).
    [17] Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I. K. Kang, J Biosci Bioeng

    ,100, 43 (2005).
    [18] O. Suwantong, S. Waleetorncheepsawat, N. Sanchavanakit , P. Pavasant, P.

    Cheepsunthorn, T. Bunaprasert, P. Supaphol, “In vitro biocompatibility of electrospun poly(3-

    hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats.” Int. J. Biol.

    Macromol., 40, 217 (2007).
    [19] K.H. Lee, H.Y. Kim, M.S. Khil, Y.M. Ra, D.R. Lee, “Characterization of nano-structured

    poly(?-caprolactone) nonwoven mats via electrospinning.” Polymer, 44, 1287 (2003).
    [20] G. M. Kim, G. H. Michler, S. Henning, H. J. Radusch, A. Wutzler, “Thermal and

    spectroscopic characterization of microbial poly(3-hydroxybutyrate) submicrometer fibers

    prepared by electrospinning.” J. Appl. Polym.Sci., 103, 1860 (2007).
    [21] W. W. Graessley, polymer, 21, 258 (1980).
    [22] C. Wang, C. H. Hsu, J. H. Lin, “Scaling laws in electrospinning of polystyrene solutions.”

    Macromolecules, 39, 7662 (2006).
    [23] D. Li, Y. Xia, “Fabrication of titania nanofibers by electrospinning.” Nano Letters, 3, 555

    (2003).
    [24] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, “The effect of processing variables on

    the morphology of electrospun nanofibers and textiles.” Polymer, 42, 261 (2001).
    [25] H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning.”

    Polymer, 40, 4585 (1999).
    [26] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, “Bending instability of

    electrospinning of nanofibers.” J. Appl. Phys., 87, 4531, (2000).
    [27] S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, “Micro-and nanostructured surface

    morphology on electrospun polymer fibers.” Macromolecules, 35, 8456 (2002).
    [28] J. H. Yu, S. V. Fridrikh, G. C. Rutledge, “The role of elasticity in the formation of electrospun

    fibers.” Polymer, 47, 4789 (2006).
    [29] C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, H. Hou, “Electrospun polymer

    nanofibres with small diameters.” Nanotechnology, 17, 1558 (2006).
    [30] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, “A review on polymer nanofibers by

    electrospinning and their applications in nanocomposites.” Compos. Sci. Technol., 63, 2223

    (2003).
    [31] W. A. Yee, M. Kotaki, Y. Lin, X. Lu, “Morphology, polymorphism behavior and molecular

    orientation of electrospun poly(vinylidene fluoride) fibers.” Polymer, 48, 512 (2007).
    [32] Kalayci, V. E, P. K. Patra, Y. K. Kim, S. C. Ugbolue, S. B. Warner, “Charge consequences

    in electrospun polyacrylonitrile (PAN) nanofibers.” Polymer, 46, 7191 (2005).
    [33] J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowlin, “Electrospinning of collagen

    nanofibers.” Biomacromolecules, 3, 232 (2002).
    [34] L. Wannatong, A. Sirivat, P. Supaphol, “Effects of solvents on electrospun polymeric fibers:

    preliminary study on polystyrene.” Polym. Int., 53, 1851 (2004).
    [35] D. Li, Y. Wang, Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially

    aligned arrays.” Nano Lett., 3, 1167 (2003).
    [36] W.E. Teo, S. Ramakrishna, “Electrospun fibre bundle made of aligned nanofibres over two

    fixed points.” Nanotechnology, 16, 1878 (2005).
    [37] W. E. Teo, M. Kotaki, X. M. Mo, S. Ramakrishna, “Porous tubular structures with controlled

    fibre orientation using a modified electrospinning method.” Nanotechnology, 16, 918 (2005).
    [38] W. E. Teo, S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies.”

    Nanotechnology, 17, R89 (2006).
    [39] O. O. Dosunmu, G. G. Chase, W. Kataphinan, D. H. Reneker, “Electrospinning of polymer

    nanofibres from multiple jets on a porous tubular surface.” Nanotechnology, 17, 1123 (2006).
    [40] A. L. Yarin, E. Zussman, “Upward needleless electrospinning of multiple nanofibers.”

    Polymer, 45, 2977 (2004).
    [41] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, “Compound core-shell

    polymer nanofibers by co-electrospinning.” Adv. Mater., 15, 1929 (2003).
    [42] Y. Zhang, Z. M. Huang, X. Xu, C. T. Lim, S. Ramakrishna, “ Preparation of core-shell

    structured PCL-r-Gelatin, bi-component nanofibers by coaxial electrospinning.” Chem. Mater., 16,

    3406 (2004).
    [43] M. Wang, J. H. Yu, D. L. Kaplan, G. C. Rutledge, “Production of submicron diameter silk

    fibers under benign processing conditions by two-fluid electrospinning.” Macromolecules, 39, 1102

    (2006).
    [44] GH. Kim, Y. S. Cho, W. D. Kim, “Stability analysis for multi-jets electrospinning process

    modified with a cylindrical electrode.” European Polym. J., 42, 2031 (2006).
    [45] S. A. Theron, A. L. Yarin, E. Zussman, E. Kroll, “Multiple jets in electrospinning: experiment

    and modeling.” Polymer, 46, 2889 (2005).
    [46] K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi, “Mechanical behavior of

    electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends.” J. Polym. Sci., Part:B,

    Polym. Phys. , 41, 1256 (2003).
    [47] K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, N. H. Sung, “Influence of a mixing solvent with

    tetrahydrofuran and n,n-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats.” J.

    Polym. Sci. , Part : B, Polym. Phys. 40, 2259 (2002).
    [48] G. Larsen, R. Spretz, R. Velarde-Ortiz, “Use of coaxial gas jackets to stabilize Taylor cone of

    volatile solutions and to induce particle-to-fiber transitions.” Adv. Mater, 16, 166 (2004).
    [49] 黃怡慧, 以電紡絲法製備聚羥基丁酸酯纖維, 國立成功大學碩士論文, (2005).
    [50] 林坤賢, 以電紡絲法製備PBO纖維, 國立成功大學碩士論文, (2005).
    [51] 林健樺, 以電紡絲法製備聚苯乙烯纖維膜, 國立成功大學碩士論文, (2004).
    [52] 洪崇豪, 以電紡絲法製備彈性奈米SBS纖維膜, 國立成功大學碩士論文, (2004).

    下載圖示 校內:2009-07-27公開
    校外:2010-07-27公開
    QR CODE