| 研究生: |
徐嘉鴻 Hsu, Chia-Hung |
|---|---|
| 論文名稱: |
以電紡絲法製備生物可分解性聚羥基丁酸酯纖維膜 Preparation of biodegradable polyhydroxybutyrate fibers via electrospinning |
| 指導教授: |
王紀
wang, chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 電壓 、電紡絲 |
| 外文關鍵詞: | electrospinning, voltage |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
聚羥基丁酸酯(PHB) 為一對環境無害之天然性生物可分解(相容性)之材料。在醫藥及生物材料上有廣泛的應用性,具發展潛能可取代現今一些塑膠材料。
本研究所得纖維主要是利用氯仿及氯仿/N,N-二甲基甲醯胺共溶劑溶解PHB形成均勻溶液後以電紡絲法來製備,但因氯仿具揮發性,會造成不銹鋼針頭前端之Taylor cone乾涸形成膠狀物中斷電紡絲製程,因此可利用氮氣攜帶飽和氯仿蒸汽包覆Taylor cone的方式加以克服此難題。
本研究主要探討操作變數及溶液性質對電紡絲製程中圓椎高度、液柱長度、液柱直徑與纖維直徑變化的影響。
實驗發現溶液流量(Q)、操作電壓(V)及溶液黏度(η0)的改變對纖維直徑(df)及液柱直徑(dj)存在著一重要的scaling law關係分別為:dj~V^-0.56、df~V^-0.61, dj~Q^0.61、df~Q^0.33, dj~η0^0.04、df~η0^0.36。
在固定溶液性質時改變操作變數(Q與V)進行電紡絲所得纖維直徑及液柱直徑遵循以下關係:df~dj^0.54。
Abstract
Poly(3-hydroxybutyric acid) (PHB) is a natural biodegradable plastic with biocompatibility and without any toxic byproducts. It is used mainly in biomaterials for medical applications and has a high possibility to replace conventional non-biodegradable materials.
The PHB fibers were electrospun from PHB/CF or PHB/CF+DMF solutions. Since CF has a high volatility, the Taylor cone at the tip of the needle will become gel. We used N2 as a carrying gas for bringing the cone to overcome this problem.
In the study, we used PHB/CF+DMF solutions to discuss the effects of the processing variables and solution properties on the morphologies of cone height, jet length and jet/fiber diameters.
Some scaling laws between the jet diameter(dj), fiber diameter(df) and the flow rate(Q), applied voltage(V) and solution viscosity(η0) were derived and expressed as follows: dj~V^-0.56、df~V^-0.61, dj~Q^0.61、df~Q^0.33, dj~η0^0.04、df~η0^0.36.
Regardless of the processing variables, dj and df were found to follow a master curve: df~dj^0.54, at a given solution.
參考文獻
[1] J. Hao and X. Deng, “Semi-interpenetrating networks of bacterialpoly(3-hydroxybutyrate) with
net-poly(ethylene glycol)” Polymer, 42,4091 (2001).
[2] 黃怡菁,“生物可分解材料澱粉與PHB(poly-3- hydroxy butyrate)合膠之製備及性質研
究”,中國文化大學材料科學與製造研究所碩士論文 (2004) 。
[3] M. Lemoigne, Ann. Inst. Past, 39, 144 (1925).
[4] K. Sombatmankhong, N. Scanchavanakit, P. Pavasant, P. Supaphol, “Bone scaffolds from
electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
andtheir blend.” polymer, 48,1419 (2007).
[5] C. H. Rivard, C. Chaput, S. Rhalmi, A. Selmani, Ann Chir, 50, 651 (1996).
[6] B. Nebe, C. Forster, H. Pommerenke, G. Fulda, D. Behrend, U. Bernewski, Biomaterials, 22,
2425 (2001).
[7] L.M.W.K. Gunaratne, R.A. Shanks, G. Amarasinghe, “Thermal history effects on crystallization
and melting of poly(3-hydroxybutyrate).” Thermochim. Acta 423,127 (2004).
[8] C. S. Ha, W. J. Cho, Prog. Polym. Sci. 27,759 (2002).
[9] T. Ikejima, Y. Inoue, “Crystallization behavior and environmental biodegradability of the blend
films of poly(3-hydroxybutyric acid) with chitin and chitosan Carbohydrate.” polymers, 41, 351
(2000).
[10] H. Sato, R. Murakami, A. Padermshoke, F. Hirose, K. Senda, I. Noda and Y. Ozaki,
“Infrared spectroscopy studies of CH…O hydrogenbondings and thermal behavior of
biodegradable poly(hydroxyalkanoate).” Macromolecules, 37, 7203 (2004).
[11] T. Ikejima, Y. Inoue, “Crystallization behavior and environmental biodegradability of the blend
films of poly(3-hydroxybutyric acid) with chitin and chitosan, Carbohydrate.” Polymer, 41,351
(2000).
[12] K. Sombatmankhong, Orawan Suwantong, Suchadaw Aleetorn Cheepsawat, Pitt Supaphol, “
Electrospun fiber mats of poly(3-hydroxybutyrate), Poly(3-hydroxybutyrate-co-3-hydroxy
valerate) , and their blends.” J. Polym. Sci., Part:B, Polym. Phys. , 44, 2923 (2006).
[13] M. Bognitzki, W. Czado, T. Frese, A. Schapor, M. Hellwig, M. Steinhart, A. Greiner, J. H.
Wendorff, “Nanostructured fibers via electrospinning.” Adv. Mater. 13, 70 (2001).
[14] J. S. Choi, S. W. Lee, L. Jeong, S. H. Bae, B. C. Min, J. H. Youk, W. H. Park, “Effect of
organosoluble salts on the nanofibrous structure ofelectrospun poly(3-hydroxybutyrate-co-3-
hydroxyvalerate).” Int. J. Biol. Macromol. 34, 249 (2004).
[15] X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, B. Chu, “Structure and process relationship
of electrospun bioabsorbable nanofiber membranes.” Polymer; 43, 4403 (2002).
[16] I.S. Lee, O.H. Kwon, W. Meng, I.K. Kang, Y. Ito, Macromol Res. 12, 374 (2004).
[17] Y. Ito, H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I. K. Kang, J Biosci Bioeng
,100, 43 (2005).
[18] O. Suwantong, S. Waleetorncheepsawat, N. Sanchavanakit , P. Pavasant, P.
Cheepsunthorn, T. Bunaprasert, P. Supaphol, “In vitro biocompatibility of electrospun poly(3-
hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats.” Int. J. Biol.
Macromol., 40, 217 (2007).
[19] K.H. Lee, H.Y. Kim, M.S. Khil, Y.M. Ra, D.R. Lee, “Characterization of nano-structured
poly(?-caprolactone) nonwoven mats via electrospinning.” Polymer, 44, 1287 (2003).
[20] G. M. Kim, G. H. Michler, S. Henning, H. J. Radusch, A. Wutzler, “Thermal and
spectroscopic characterization of microbial poly(3-hydroxybutyrate) submicrometer fibers
prepared by electrospinning.” J. Appl. Polym.Sci., 103, 1860 (2007).
[21] W. W. Graessley, polymer, 21, 258 (1980).
[22] C. Wang, C. H. Hsu, J. H. Lin, “Scaling laws in electrospinning of polystyrene solutions.”
Macromolecules, 39, 7662 (2006).
[23] D. Li, Y. Xia, “Fabrication of titania nanofibers by electrospinning.” Nano Letters, 3, 555
(2003).
[24] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. B. Tan, “The effect of processing variables on
the morphology of electrospun nanofibers and textiles.” Polymer, 42, 261 (2001).
[25] H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning.”
Polymer, 40, 4585 (1999).
[26] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, “Bending instability of
electrospinning of nanofibers.” J. Appl. Phys., 87, 4531, (2000).
[27] S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, “Micro-and nanostructured surface
morphology on electrospun polymer fibers.” Macromolecules, 35, 8456 (2002).
[28] J. H. Yu, S. V. Fridrikh, G. C. Rutledge, “The role of elasticity in the formation of electrospun
fibers.” Polymer, 47, 4789 (2006).
[29] C. Huang, S. Chen, C. Lai, D. H. Reneker, H. Qiu, Y. Ye, H. Hou, “Electrospun polymer
nanofibres with small diameters.” Nanotechnology, 17, 1558 (2006).
[30] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, “A review on polymer nanofibers by
electrospinning and their applications in nanocomposites.” Compos. Sci. Technol., 63, 2223
(2003).
[31] W. A. Yee, M. Kotaki, Y. Lin, X. Lu, “Morphology, polymorphism behavior and molecular
orientation of electrospun poly(vinylidene fluoride) fibers.” Polymer, 48, 512 (2007).
[32] Kalayci, V. E, P. K. Patra, Y. K. Kim, S. C. Ugbolue, S. B. Warner, “Charge consequences
in electrospun polyacrylonitrile (PAN) nanofibers.” Polymer, 46, 7191 (2005).
[33] J. A. Matthews, G. E. Wnek, D. G. Simpson, G. L. Bowlin, “Electrospinning of collagen
nanofibers.” Biomacromolecules, 3, 232 (2002).
[34] L. Wannatong, A. Sirivat, P. Supaphol, “Effects of solvents on electrospun polymeric fibers:
preliminary study on polystyrene.” Polym. Int., 53, 1851 (2004).
[35] D. Li, Y. Wang, Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially
aligned arrays.” Nano Lett., 3, 1167 (2003).
[36] W.E. Teo, S. Ramakrishna, “Electrospun fibre bundle made of aligned nanofibres over two
fixed points.” Nanotechnology, 16, 1878 (2005).
[37] W. E. Teo, M. Kotaki, X. M. Mo, S. Ramakrishna, “Porous tubular structures with controlled
fibre orientation using a modified electrospinning method.” Nanotechnology, 16, 918 (2005).
[38] W. E. Teo, S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies.”
Nanotechnology, 17, R89 (2006).
[39] O. O. Dosunmu, G. G. Chase, W. Kataphinan, D. H. Reneker, “Electrospinning of polymer
nanofibres from multiple jets on a porous tubular surface.” Nanotechnology, 17, 1123 (2006).
[40] A. L. Yarin, E. Zussman, “Upward needleless electrospinning of multiple nanofibers.”
Polymer, 45, 2977 (2004).
[41] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, “Compound core-shell
polymer nanofibers by co-electrospinning.” Adv. Mater., 15, 1929 (2003).
[42] Y. Zhang, Z. M. Huang, X. Xu, C. T. Lim, S. Ramakrishna, “ Preparation of core-shell
structured PCL-r-Gelatin, bi-component nanofibers by coaxial electrospinning.” Chem. Mater., 16,
3406 (2004).
[43] M. Wang, J. H. Yu, D. L. Kaplan, G. C. Rutledge, “Production of submicron diameter silk
fibers under benign processing conditions by two-fluid electrospinning.” Macromolecules, 39, 1102
(2006).
[44] GH. Kim, Y. S. Cho, W. D. Kim, “Stability analysis for multi-jets electrospinning process
modified with a cylindrical electrode.” European Polym. J., 42, 2031 (2006).
[45] S. A. Theron, A. L. Yarin, E. Zussman, E. Kroll, “Multiple jets in electrospinning: experiment
and modeling.” Polymer, 46, 2889 (2005).
[46] K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, S. W. Choi, “Mechanical behavior of
electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends.” J. Polym. Sci., Part:B,
Polym. Phys. , 41, 1256 (2003).
[47] K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, N. H. Sung, “Influence of a mixing solvent with
tetrahydrofuran and n,n-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats.” J.
Polym. Sci. , Part : B, Polym. Phys. 40, 2259 (2002).
[48] G. Larsen, R. Spretz, R. Velarde-Ortiz, “Use of coaxial gas jackets to stabilize Taylor cone of
volatile solutions and to induce particle-to-fiber transitions.” Adv. Mater, 16, 166 (2004).
[49] 黃怡慧, 以電紡絲法製備聚羥基丁酸酯纖維, 國立成功大學碩士論文, (2005).
[50] 林坤賢, 以電紡絲法製備PBO纖維, 國立成功大學碩士論文, (2005).
[51] 林健樺, 以電紡絲法製備聚苯乙烯纖維膜, 國立成功大學碩士論文, (2004).
[52] 洪崇豪, 以電紡絲法製備彈性奈米SBS纖維膜, 國立成功大學碩士論文, (2004).