簡易檢索 / 詳目顯示

研究生: 楊國麟
Yang, Guo-Lin
論文名稱: 以量子化學探討二氧化碳及硝酸根/亞硝酸根於銅(111)之電化學共還原反應
Quantum Mechanical Study of Electrochemical Co-Reduction of CO2 and NO3-/NO2- on Cu(111)
指導教授: 鄭沐政
Cheng, Mu-Jeng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 30
中文關鍵詞: 量子化學模擬 電化學催化 共還原反應 尿素 碳氮鍵耦合
外文關鍵詞: DFT, electrochemistry, co-reduction, urea, C-N formation
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CO2和一些簡單的含氮化合物進行共還原是一個具有前景的方法來產生具有C-N鍵的產物,這個方法還可以擴展過往只單獨進行二氧化碳還原(CO2ER)時所獲得的產物範圍。在此份研究中,我們使用密度泛函數理論(Density functional theory,DFT)搭配定電極電位模型進行計算,探討了CO2和NO3-/NO2-在Cu(111)產生尿素的過程中C-N鍵生成的路徑。令人驚訝的是,我們發現第一支C-N鍵是由CO2和NO3-/NO2-還原成NH3時產生的表面N1中間體(*NO2、*NO、*NOH、*N、NH、NH2)耦合生成的,這個反應遵循Eley-Rideal機制,且是可發生於單一活性位點上。這些發現和過往文獻中的假設不同,先前的文獻指出是CO2ER產生的含碳物種(*COOH和*CO)作為碳氮鍵耦合的中間體。藉由Barrier decomposition analysis,我們了解到CO2參與的碳氮鍵耦合有著較低的活化能是由於CO2跟N1中間體形成過渡態時所需要付出的形變能較低,以及他們之間存在著引力所導致。此外我們發現CO2+N1的碳氮鍵耦合活化能會跟N1中間體的形變能具有很好的線性關係。基於這些研究內容,我們提出了兩種優化碳氮鍵耦合的方法。

    The co-electrolysis of CO2 with nitrogen compounds provides a promising approach for the production of molecules that contain C-N bonds. As a result, this approach expands the spectrum of products obtained solely from CO2 electrochemical reduction (CO2ER). To examine the mechanisms of C-N bond formation during the co-reduction of CO2 and NO3-/NO2- on Cu(111) to generate urea, this study utilized density functional theory (DFT) calculations in conjunction with a constant electrode potential model. Surprisingly, we discovered the initial C-N bond is formed through the coupling of gaseous CO2 with surface-bound N1 intermediates (*NO2, *NO, *NOH, *N, *NH, and *NH2), which are generated during the reduction of NO3-/NO2- to NH3. The Eley-Rideal mechanism governs this reaction, which can take place at a single active site. These findings contradict previous literature assumptions that carbon species from CO2ER to CO (i.e., *COOH and *CO) act as intermediates for C-N coupling. The favorable kinetics observed in CO2-involved C-N coupling arise from the reduced energy requirements associated with the deformation of CO2 and the N1 intermediate towards the transition state structure. Additionally, the attractive interaction between CO2 and the N1 intermediate, as revealed by barrier decomposition analysis, contributes to the overall favorable kinetics. Furthermore, our findings indicate a strong correlation between the kinetic barrier of C-N coupling in the essential CO2+N1 reactions and the deformation energy of the N1 intermediate. Taking these insights into consideration, we suggest two approaches to enhance the efficiency of C-N coupling.

    摘要 I 誌謝 IV 目錄 VI 表目錄 VII 圖目錄 VIII 第一章、緒論 1 1.1 二氧化碳電還原反應 vs 碳氮鍵耦合反應 1 1.2 碳氮鍵耦合反應(C-N coupling reaction) 1 第二章、計算方法 3 第三章、結果與討論 6 3.1 Cu(111)上的碳氮鍵耦合反應 6 3.2 為何CO2+N1反應性較佳? 11 3.3 N1於CO2參與的碳氮鍵耦合反應性 18 3.4 改善碳氮鍵耦合的策略 19 第四章、結論 21 參考文獻 22

    1. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F.; Chorkendorff, I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610-7672.
    2. Birdja, Y. Y.; Perez-Gallent., E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and Challenges in Understanding the Electrocatalytic Conversion of Carbon Dioxide to Fuels. Nat. Energy 2019, 4, 732-745.
    3. Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Domino Electroreduction of CO2 to Methanol on a Molecular Catalyst. Nature 2019, 575, 639-642.
    4. Li, F. W.; Li, Y. C.; Wang, Z.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.; Hung, S. F.; Chen, B.; Wang, Y.; Wicks, J.; Xu, Y.; Li, Y.; Gabardo, C. M.; Dinh, C. T.; Wang, Y.; Zhuang, T. T.; Sinton, D.; Sargent, E. H. Cooperative CO2-to-Ethanol Conversion via Enriched Intermediates at Molecule–Metal Catalyst Interfaces. Nat. Cat. 2020, 3, 75-82.
    5. Zhang, H. C.; Chang, X. X.; Chen, J. G. G.; Goddard, W. A.; Xu, B. J.; Cheng, M. J.; Lu, Q. Computational and Experimental Demonstrations of One-Pot Tandem Catalysis for Electrochemical Carbon Dioxide Reduction to Methane. Nat. Commun. 2019, 10, No. 3340.
    6. Clark, E. L.; Hahn, C.; Jaramillo, T. F.; Bell, A. T. Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. J. Am. Chem. Soc. 2017, 139, 15848-15857.
    7. Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; Luna, P. D.; Burdyny, T.; Che, F.; Meng, F.; Min, Y.; Quintero-Bermudez, R.; Dinh, C. T.; Pang, Y.; Zhong, M.; Zhang, B.; Li, J.; Chen, P. N.; Zheng, X. L.; Liang, H.; Ge, W. N.; Ye, B. J.; Sinton, D.; Yu, S. H.; Sargent, E. H. Steering Post-C–C Coupling Selectivity Enables High Efficiency Electroreduction of Carbon Dioxide to Multi-Carbon Alcohols. Nat. Cat. 2018, 1, 421-428.
    8. Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; Arquer, F. P. G. D.; Kiani, A.; Edwards, J. P.; Deluna, P. D.; Bushuyev, O. S.; Zou, C.; Quintero-Bermudez, R.; Pang, Y.; Sinton, D.; Sargent, E. H. CO2 Electroreduction to Ethylene via Hydroxide-Mediated Copper Catalysis at an Abrupt Interface. Science 2018, 360, 783−787.
    9. Zhou, Y. S.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; Luna, P. D.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; Li, H.; Chen, P.; Bladt, E.; Quintero-Bermudez, R.; Sham, T. K.; Bals, S.; Hofkens, J.; Sinton, D.; Chen, G.; Sargent, E. H. Dopant-Induced Electron Localization Drives CO2 Reduction to C2 Hydrocarbons. Nat. Chem. 2018, 10, 974-980.
    10. Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G. G.; Jiao, F. A Selective and Efficient Electrocatalyst for Carbon Dioxide Reduction. Nat. Commun. 2014, 5, No. 3242.
    11. Tao, Z.; Rooney, C. L.; Liang, Y.; Wang, H. Accessing Organonitrogen Compounds via C-N Coupling in Electrocatalytic CO2 Reduction. J. Am. Chem. Soc. 2021, 143, 19630-19642.
    12. Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angew. Chem., Int. Ed. 2021, 60, 19572-19590.
    13. Li, J.; Zhang, Y.; Kuruvinashetti, K.; Kornienko, N. Construction of C–N Bonds from Small-Molecule Precursors through Heterogeneous Electrocatalysis. Nat. Rev. Chem. 2022, 6, 303-319.
    14. Shibata, M.; Yoshida, K.; Furuya, N. Electrochemical Synthesis of Urea on Reduction of Carbon Dioxide with Nitrate and Nitrite Ions. J. Electroanal. Chem. 1995, 387, 143-145.
    15. Shibata, M.; Yoshida., K.; Furuya, N. Electrochemical Synthesis of Urea at Gas-Diffusion Electrodes - Part II. Simultaneous Reduction of Carbon Dioxide and Nitrite Ions at Cu, Ag and Au Catalysts. J. Electroanal. Chem. 1998, 442, 67-72.
    16. Shibata, M.; Yoshida, K.; Furuya, N. Electrochemical Synthesis of Urea at Gas-Diffusion Electrodes:III. Simultaneous Reduction of Carbon Dioxide and Nitrite Ions with Various Metal Catalysts. J. Electro. Chem. Soc. 1998, 145, 595-600.
    17. Shibata, M.; Yoshida K.; Furuya, N. Electrochemical Synthesis of Urea at Gas-Diffusion Electrodes: IV. Simultaneous Reduction of Carbon Dioxide and Nitrate Ions with Various Metal Catalysts. J. Electrochem. Soc. 1998, 145, 2348−2353.
    18. Shibata, M.; Yoshida K.; Furuya, N. Electrochemical Synthesis of Urea at Gas-Diffusion Electrodes I. Simultaneous Reduction of Carbon Dioxide and Nitrite Ions at Zn Catalysts. Denki Kagaku, 1996, 64, 1068-1073.
    19. Shibata, M.; Furuya, N. Electrochemical Synthesis of Urea at Gas-Diffusion Electrodes Part VI. Simultaneous Reduction of Carbon Dioxide and Nitrite Ions with Various Metallophthalocyanine Catalysts. J. Electroanal. Chem. 2001, 507, 177−184.
    20. Shibata, M.; Furuya, N. Simultaneous Reduction of Carbon Dioxide and Nitrate Ions at Gas-Diffusion Electrodes with Various Metallophthalocyanine Catalysts. Electrochim. Acta 2003. 48, 3953-3958.
    21. Saravanakumar, D.; Song, J.; Lee, S.; Hur, N. H.; Shin, W. Electrocatalytic Conversion of Carbon Dioxide and Nitrate Ions to Urea by a Titania-Nafion Composite Electrode. ChemSusChem 2017, 10, 3999-4003.
    22. Feng, Y. G.; Yang, H.; Zhang, Y.; Huang, X. Q.; Li, L. G.; Cheng, T.; Shao, Q. Te-Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction. Nano Lett. 2020, 20, 8282-8289.
    23. Cao, N.; Quan, Y. L.; Guan, A. X.; Yang, C.; Ji, Y.; Zhang, L. J.; Zheng, G. F. Oxygen Vacancies Enhanced Cooperative Electrocatalytic Reduction of Carbon Dioxide and Nitrite Ions to Urea. J. Colloid Interface Sci. 2020, 577, 109-114.
    24. Lv, C. D.; Zhong, L.; Liu, H.; Fang, Z.; Yan, C.; Chen, M.; Kong, Y.; Lee, C.; Liu, D.; Li, S.; Liu, J.; Song, L.; Chen, G.; Yan, Q.; Yu, G. Selective Electrocatalytic Synthesis of Urea with Nitrate and Carbon Dioxide. Nat. Sustain. 2021, 4, 868-876.
    25. Meng, N. N.; Huang, Y. M.; Liu, Y.; Yu, Y. F.; Zhang, B. Electrosynthesis of Urea from Nitrite and CO2 over Oxygen Vacancy-Rich ZnO Porous Nanosheets. Cell Rep. Phys. Sci. 2021, 2, No. 100378.
    26. Lv, C.; Lee, C.; Zhong, L.; Liu, H.; Liu, J.; Yang, L.; Yan, C.; Yu, W.; Hng, H. H.; Qi, Z.; Song, L.; Li, S.; Loh, K. P.; Yan, Q.; Yu, G. A Defect Engineered Electrocatalyst That Promotes High-Efficiency Urea Synthesis under Ambient Conditions. ACS Nano 2022, 16, 8213-8222.
    27. Liu, S.; Yin, S.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. AuCu Nanofibers for Electrosynthesis of Urea from Carbon Dioxide and Nitrite. Cell Rep. Phys. Sci. 2022, 3, No. 100869.
    28. Huang, Y. M.; Yang, R.; Wang, C. H.; Meng, N. N.; Shi, Y. M.; Yu, Y. F.; Zhang, B. Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Lett. 2022, 7, 284-291.
    29. Kayan, D. B.; Koleli, F. Simultaneous Electrocatalytic Reduction of Dinitrogen and Carbon Dioxide on Conducting Polymer Electrodes. Appl. Catal., B 2016, 181, 88-93.
    30. Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; Yan, D.; Xie, C.; Zou, Y.; Wang, Y.; Chen, R.; Huo, J.; Li, Y.; Cheng, J.; Su, H.; Zhao, X.; Cheng, W.; Liu, Q.; Lin, H.; Luo, J.; Chen, J.; Dong, M.; Cheng, K.; Li, C.; Wang, S. Coupling N2 and CO2 in H2O to Synthesize Urea under Ambient Conditions. Nat. Chem. 2020, 12, 717-724.
    31. Yuan, M. L.; Chen, J. W.; Bai, Y. L.; Liu, Z. J.; Zhang, J. X.; Zhao, T. K.; Wang, Q.; Li, S. W.; He, H. Y.; Zhang, G. J. Unveiling Electrochemical Urea Synthesis by Co-Activation of CO2 and N2 with Mott-Schottky Heterostructure Catalysts. Angew. Chem., Int. Ed. 2021, 60, 10910-10918.
    32. Yuan, M.; Zhang, H.; Xu, Y.; Liu, R.; Wang, R.; Zhao, T.; Zhang, J.; Liu, Z.; He, H.; Yang, C.; Zhang, S.; Zhang, G. J. Artificial Frustrated Lewis Pairs Facilitating the Electrochemical N2 and CO2 Conversion to Urea. Chem. Catal. 2022, 2, 309-320.
    33. Yuan, M. L.; Chen, J. W.; Bai, Y. L.; Liu, Z. J.; Zhang, J. X.; Zhao, T. K.; Shi, Q. N.; Li, S. W.; Wang, X.; Zhang, G. J. Electrochemical C-N coupling with Perovskite Hybrids toward Efficient Urea Synthesis. Chem. Sci. 2021, 12, 6048-6058.
    34. Yuan, M.; Chen, J.; Xu, Y.; Liu, R.; Zhao, T.; Zhang, J.; Ren, Z.; Liu, Z.; Streb, C.; He, H.; Yang, C.; Zhang, S.; Zhang, G. J. Highly Selective Electroreduction of N2 and CO2 to Urea over Artificial Frustrated Lewis Pairs. Energy Environ. Sci. 2021, 14, 6605-6615.
    35. Wu, Y. S.; Jiang, Z.; Lin, Z. C.; Liang, Y. Y.; Wang, H. L. Direct Electrosynthesis of Methylamine from Carbon Dioxide and Nitrate. Nat. Sustain. 2021, 4, 725-730.
    36. Tao, Z. X.; Wu, Y. S.; Wu, Z. S.; Shang, B.; Rooney, C.; Wang, H. L. Cascade Electrocatalytic Reduction of Carbon Dioxide and Nitrate to Ethylamine. J. Energy Chem. 2022, 65, 367-370.
    37. Rooney, C. L.; Wu, Y. S.; Tao, Z. X.; Wang, H. L. Electrochemical Reductive N-Methylation with CO2 Enabled by a Molecular Catalyst. J. Am. Chem. Soc. 2021, 143, 19983-19991.
    38. Jouny, M.; Lv, J. J.; Cheng, T.; Ko, B. H.; Zhu, J. J.; Goddard, W. A.; Jiao, F. Formation of Carbon-Nitrogen Bonds in Carbon Monoxide Electrolysis. Nat. Chem, 2019, 11, 846-851.
    39. Li, J.; Kornienko, N. Electrochemically Driven C-N Bond Formation from CO2 and Ammonia at the Triple-Phase Boundary. Chem. Sci. 2022, 13, 3957-3964.
    40. Glibert, P. M.; Harrison, J.; Heil, C.; Seitzinger, S. Escalating Worldwide Use of Urea – A Global Change Contributing to Coastal Eutrophication. Biogeochemistry 2006, 77, 441-463.
    41. Xia, M.; Mao, C.; Gu, A.; Tountas, A. A.; Qiu, C.; Wood, T. E.; Li, Y. F.; Ulmer, U.; Xu, Y.; Viasus, C. J.; Ye, J.; Qian, C.; Ozin, G. Solar Urea: Towards a Sustainable Fertilizer Industry. Angew. Chem. Int. Ed. 2022, 61, No. e202110158.
    42. Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical Reduction of Nitrate to Ammonia via Direct Eight-Electron Transfer Using a Copper–Molecular Solid Catalyst. Nat. Energy 2020, 5, 605-613.
    43. Picetti, R.; Deeney, M.; Pastorino, S.; Miller, M. R.; Shah, A.; Leon, D. A.; Dangour, A. D.; Green, R. Nitrate and Nitrite Contamination in Drinking Water and Cancer Risk: A Systematic Review with Meta-Analysis. Environ. Res. 2022, 210, No. 112988.
    44. Ni, Z. Y.; Liang, H. M.; Yi, Z. Y.; Guo, R.; Liu, C. M.; Liu, Y. G.; Sun, H. Y.; Liu, X. W. Research Progress of Electrochemical CO2 Reduction for Copper-Based Catalysts to Multicarbon Products. Coord. Chem. Rev. 2021, 441. No. 213983.
    45. Arán-Ais, R. M.; Gao, D. F.; Roldan Cuenya, B. Structure- and Electrolyte-Sensitivity in CO2 Electroreduction. Acc. Chem. Res. 2018, 51, 2906-2917.
    46. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
    47. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, No. 154104.
    48. Vitos, L.; Ruban, A. V.; Skriver, H. L.; Kollar, J. The Surface Energy of Metals. Surf. Sci. 1998, 411, 186-202.
    49. Henkelman, G.; Jonsson, H. A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. J. Chem. Phys. 1999, 111, 7010-7022.
    50. Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. J. Phys. Chem. Lett. 2016, 7, 1471-1477.
    51. Xiao, H.; Cheng, T.; Goddard, W. A.; Sundararaman, R. Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu(111). J. Am. Chem. Soc. 2016, 138, 483-486.
    52. Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit Self-Consistent Electrolyte Model in Plane-Wave Density-Functional Theory. J. Chem. Phys. 2019, 151, No. 234101.
    53. Hong, J. C.; Kuo, T. C.; Yang, G. L.; Hsieh, C. T.; Shen, M. H.; Chao, T. H.; Lu, Q.; Cheng, M. J. Atomistic Insights into Cl–-Triggered Highly Selective Ethylene Electrochemical Oxidation to Epoxide on RuO2: Unexpected Role of the In Situ Generated Intermediate to Achieve Active Site Isolation. ACS Catal. 2021, 11, 13660-13669.
    54. Cheng, Y. L.; Hsieh, C. T.; Ho, Y. S.; Shen, M. H.; Chao, T. H.; Cheng, M. J. Examination of the Bronsted-Evans-Polanyi Relationship for the Hydrogen Evolution Reaction on Transition Metals Based on Constant Electrode Potential Density Functional Theory. Phys. Chem. Chem. Phys. 2022, 24, 2476-2481.
    55. Chang, K.; Zhang, H. C.; Chen, J. G. G.; Lu, Q.; Cheng, M. J. Constant Electrode Potential Quantum Mechanical Study of CO2 Electrochemical Reduction Catalyzed by N-Doped Graphene. ACS Catal. 2019, 9, 8197-8207.
    56. Zhang, H.C.; Li, C. S.; Lu, Q.; Cheng, M. J.; Goddard, W. A. Selective Activation of Propane Using Intermediates Generated during Water Oxidation. J. Am. Chem. Soc. 2021, 143, 3967-3974.
    57. Kuo, T. C.; Chou, J. W.; Shen, M. H.; Hong, Z. S.; Chao, T. H.; Lu, Q.; Cheng, M. J. First-Principles Study of C–C Coupling Pathways for CO2 Electrochemical Reduction Catalyzed by Cu(110). J. Phys. Chem. C 2021, 125, 2464-2476.
    58. He, M.; Li, C. S.; Zhang, H. C.; Chang, X. X.; Chen, J. G. G.; Goddard, W. A.; Cheng, M. J.; Xu, B. J.; Lu, Q. Oxygen Induced Promotion of Electrochemical Reduction of CO2 via Co-Electrolysis. Nat. Commun. 2020, 11, No. 3844.
    59. Pillai, H. S.; Xin, H. L. New Insights into Electrochemical Ammonia Oxidation on Pt(100) from First Principles. Ind Eng Chem. Res. 2019, 58, 10819-10828.
    60. Miu, E. V.; McKone, J. R.; Mpourmpakis, G. The Sensitivity of Metal Oxide Electrocatalysis to Bulk Hydrogen Intercalation: Hydrogen Evolution on Tungsten Oxide. J. Am. Chem. Soc. 2022, 144, 6420-6433.
    61. Abidi, N.; Bonduelle-Skrzypczak, A.; Steinmann, S. N. How Stable Are 2H-MoS2 Edges under Hydrogen Evolution Reaction Conditions? J. Phys. Chem. C 2021, 125, 17058-17067.
    62. Choi, C.; Gu, G. H.; Noh, J.; Park, H. S.; Jung, Y. S. Understanding Potential-Dependent Competition between Electrocatalytic Dinitrogen and Proton Reduction Reactions. Nat. Commun. 2021, 12, No. 4353.
    63. Garza, A. J.; Bell, A. T.; Head-Gordon, M. Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS Catal. 2018, 8, 1490-1499.
    64. Garza, A. J.; Bell, A. T.; Head-Gordon, M. Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO2 on Copper? J. Phys. Chem. Lett. 2018, 9, 601-606.
    65. Panaritis, C.; Hajar, Y. M.; Treps, L.; Michel, C.; Baranova, E. A.; Steinmann, S. N. Demystifying the Atomistic Origin of the Electric Field Effect on Methane Oxidation. J. Phys. Chem. Lett. 2020, 11, 6976-6981.
    66. Hajar, Y. M.; Treps, L.; Michel, C.; Baranova, E. A.; Steinmann,S. N. Theoretical Insight into the Origin of the Electrochemical Promotion of Ethylene Oxidation on Ruthenium Oxide. Catal. Sci. Technol. 2019, 9, 5915-5926.
    67. Granda-Marulanda, L. P.; Rendon-Calle, A.; Builes, S.; Illas, F.; Koper, M. T. M.; Calle-Vallejo, F. A Semiempirical Method to Detect and Correct DFT-Based Gas-Phase Errors and Its Application in Electrocatalysis. ACS Catal. 2020, 10, 6900-6907.
    68. Urrego-Ortiz, R.; Builes, S.; Calle-Vallejo, F. Impact of Intrinsic Density Functional Theory Errors on the Predictive Power of Nitrogen Cycle Electrocatalysis Models. ACS Catal. 2022, 12, 4784-4791.
    69. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3, 1311-1315.
    70. Christensen, R.; Hansen, H. A.; Vegge, T. Identifying Systematic DFT Errors in Catalytic Reactions. Catal. Sci. Technol. 2015, 5, 4946-4949.
    71. Duca, M.; Koper, M. T. M. Powering Denitrification: The Perspectives of Electrocatalytic Nitrate Reduction. Energy Environ. Sci. 2012, 5, 9726−9742.
    72. Liu, J. X.; Richards, D.; Singh, N.; Goldsmith, B. R. Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. ACS Catal. 2019, 9, 7052-7064.
    73. Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct Electrochemical Ammonia Synthesis from Nitric Oxide. Angew. Chem., Int. Ed. 2020, 59, 9711-9718.
    74. Chun, H. J.; Zeng, Z. H.; Greeley, J. DFT Insights into NO Electrochemical Reduction: A Case Study of Pt(211) and Cu(211) Surfaces. ACS Catal. 2022, 12, 1394-1402.
    75. Wang, Y.; Qin, X. P.; Shao, M. H. First-Principles Mechanistic Study on Nitrate Reduction Reactions on Copper Surfaces: Effects of Crystal Facets and pH. J. Catal. 2021, 400, 62-70.
    76. Casey-Stevens, C. A.; Asmundsson, H.; Skulason, E.; Garden, A. L. A Density Functional Theory Study of the Mechanism and Onset Potentials for the Major Products of NO Electroreduction on Transition Metal Catalysts. Appl. Surf. Sci. 2021, 552, No. 149063.
    77. Zhang, H. C.; Goddard, W. A.; Lu, Q.; Cheng, M. J. The Importance of Grand-Canonical Quantum Mechanical Methods to Describe the Effect of Electrode Potential on the Stability of Intermediates Involved in Both Electrochemical CO2 Reduction and Hydrogen Evolution. Phys. Chem. Chem. Phys. 2018, 20, 2549-2557.
    78. Shi, C.; Chan, K.; Yoo, J. S.; Nørskov, J. K. Barriers of Electrochemical CO2 Reduction on Transition Metals. Org. Process Res. Dev. 2016, 20, 1424-1430.
    79. Liu, Z. P.; Hu, P. General Rules for Predicting Where a Catalytic Reaction Should Occur on Metal Surfaces: A Density Functional Theory Study of C-H and C-O Bond Breaking/Making on Flat, Stepped, and Kinked Metal Surfaces. J. Am. Chem. Soc. 2003, 125, 1958-1967.
    80. Liu, Z. P.; Hu, P. General Trends in the Barriers of Catalytic Reactions on Transition Metal Surfaces. J. Chem. Phys. 2001, 115, 4977-4980.
    81. Finkelstein, A. V.; Janin, J. The Price of Lost Freedom-Entropy of Bimolecular Complex-Formation. Protein Eng., Des. Sel. 1989, 3, 1-3.
    82. Alavi, A.; Hu, P. J.; Deutsch, T.; Silvestrelli, P. L.; Hutter, J. CO Oxidation on Pt(111):An Ab Initio Density Functional Theory Study. Phys. Rev. Lett. 1998, 80, 3650-3653.
    83. Bleakley, K.; Hu, P. Density Functional Theory Study of the Interaction between CO and O on a Pt Surface: CO/Pt(111), O/Pt(111), and CO/O/Pt(111). J. Am. Chem. Soc. 1999, 121, 7644-7652.
    84. Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Tornqvist, E.; Nørskov, J. K. Role of Steps in N2 Activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814-1817.
    85. Manz, T. A.; Limas, N. G. Introducing DDEC6 Atomic Population Analysis: Part 1. Charge Partitioning Theory and Methodology. RSC Adv. 2016, 6, 47771-47801.
    86. Limas, N. G.; Manz, T. A. Introducing DDEC6 Atomic Population Analysis: Part 2. Computed Results for a Wide Range of Periodic and Nonperiodic Materials. RSC Adv. 2016, 6, 45727-45747.
    87. Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.; Head-Gordon, M. Unravelling the Origin of Intermolecular Interactions Using Absolutely Localized Molecular Orbitals. J. Phys. Chem. A 2007, 111, 8753-8765.
    88. Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M. Analysis of Charge Transfer Effects in Molecular Complexes Based on Absolutely Localized Molecular Orbitals. J. Chem. Phys. 2008, 128, No. 184112.
    89. Paul, J. F.; Perez-Ramirez, J.; Ample, F.; Ricart, J. M. Theoretical Studies of N2O Adsorption and Reactivity to N2 and NO on Rh(111). J. Phys. Chem. B 2004, 108, 17921−17927.
    90. Wan, H.; Bagger, A.; Rossmeisl, J. Electrochemical Nitric Oxide Reduction on Metal Surfaces. Angew. Chem., Int. Ed. 2021, 60, 21966-21972.
    91. Abild-Pedersen, F.; Greeley, J.; Studt, F.; Rossmeisl, J.; Munter, T. R.; Moses, P. G.; Skulason, E.; Bligaard, T.; Nørskov, J. K. Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces. Phys. Rev. Lett. 2007, 99, No. 016105.
    92. Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. ChemSusChem 2015, 8, 2180-2186.
    93. Dima, G. E.; de.Vooys, A. C. A.; Koper, M. T. M. Electrocatalytic Reduction of Nitrate at Low Concentration on Coinage and Transition-Metal Electrodes in Acid Solutions. J. Electroanal. Chem. 2003, 554-555, 15-23.

    下載圖示
    2025-12-31公開
    QR CODE