| 研究生: |
黃茂珅 Huang, Mao-Shen |
|---|---|
| 論文名稱: |
載具車門防撞之主動安全設計及研製 Active Security Design and Implementation for Collision Prevention of Vehicular Doors |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 車門防撞 、主動安全 、影像辨識 |
| 外文關鍵詞: | vehicular door, active security, image recognition |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在設計具有主動安全架構之車門防撞裝置,本研究主要防止汽車駕駛不當開門,亦即鏡頭感測器一旦偵測行車後方有移動物體之際,即以最快速度完成車門制動,俾於即時防護騎士用路安全。本文設計控制器通訊系統進行擷取車用區域網路系統資料,掌握汽車行車狀態資訊,再經由鏡頭偵測辨識後方移動物體,輔以完成齒條結構咬合之車門鎖門機制需求。而為驗證本系統之實際應用可行性,本文經由控制電路實作、機構實現及影像辨識功能實測結果可知,本系統確臻車門主動安全功能,研製成果具有可行性與應用參考價值。
The thesis is aimed to propose an active security design for the collision prevention of vehicular doors. For the scenario when the mirror detects any moving object behind the vehicle, then the braking of car door will be immediately performed so as to ensure the security of motor riders. In this study, by acquiring the data from the controller are network via the communication system of controller, it helps to grasp the moving status of vehicle. This is then followed by the image detection and recognition of moving objects in order for the operation of rack occlusion such that the active security requirement of door-locking mechanism can be satisfied. To verify the practical value of this proposed design, hardware realization of control circuits along with software simulation of image recognition are both completed with extensive tests. Experimental results support the feasibility of this proposed approach, benefiting the active security design of vehicles.
[1] 林采葳、杜瑞澤,車門開啓安全系統,中華民國專利編號M504747,2015年7月。
[2] 賈鍔秋,車門開啟防撞裝置,中華民國專利編號M506070號,2015年8月。
[3] 康建忠、吳冠勳、尹敬威、藍家馨、康凱恩,車門安全系統,中華民國專利編號201634318,2016年10月。
[4] 張萬榮、邱繼億、蘇健平、莫玉青,防止開車門時機車追撞之汽車後視鏡裝置,中華民國專利編號M520033,2016年4月。
[5] 吳俊霖、韓斌、劉玠樺,利用影像處理的汽車車門開啓警示方法,中華民國專利編號I531500,2016年5月。
[6] PIC18FXX8 Data Sheet, Microchip Incorporated, 2006.
[7] MCP2551 Data Sheet, Microchip Incorporated, 2016.
[8] L298 Data Sheet, ST Microelectronics Incorporated, 2000.
[9] TMS320C6748 Data Sheet, Texas Instruments Incorporated, 2017.
[10] C.F. Wu, C.J. Lin, and C.Y. Lee, “Applying a Functional Neurofuzzy Network to Real-Time Lane Detection and Front-Vehicle Distance Measurement,” IEEE Transactions on System, Man, and Cybernetics, Vol. 42, No. 4, pp. 577-589, July 2012.
[11] J.C. Tudon-Martinez, S. Fergani, O. Sename, J.J. Martinez, R. Morales-Menendez, and L. Dugard, “Adaptive Road Profile Estimation in Semi-active Car Suspensions ,” IEEE Transactions on Control Systems Technology, Vol. 23, No. 6, pp. 2293-2305, November 2011.
[12] L. Canzian, U. Demiryurek, and M.V.D. Schaar, “Collision Detection by Networked Sensors,” IEEE Transactions on Signal and Information Processing Over Network, Vol. 2, No. 1, March 2016.
[13] C. Sommer, D. Eckhoff, and F. Dressler, “IVC in Cities: Signal Attenuation by Buildings and How Parked Cars Can Improve the Situation,” IEEE Transactions on Mobile Computing, Vol. 13, No. 8, pp. 1733-1745, August 2014.
[14] B. Yang, Y. Lei, and B. Yan, “Distributed Multi-Human Location Algorithm Using Naive Bayes Classifier for a Binary Pyroelectric Infrared Sensor Tracking System,” IEEE Sensors Journal, Vol. 16, No. 1, pp. 216-223, January 1, 2016.
[15] Jiun-Ren Lin, T. Talty, and O. K. Tonguz, “A Blind Zone Alert System Based on Intra-Vehicular Wireless Sensor Networks,” IEEE Transactions on Industrial Informatics, Vol. 11, No. 2, pp. 476-484, April 2015.
[16] K. D. Kusano and H. C. Gabler, “Safety Benefits of Forward Collision Warning, Brake Assist, and Autonomous Braking Systems in Rear-End Collisions,” IEEE Transactions on Intelligent Transportation Systems, Vol. 13, No. 4, pp. 1546-1555, December 2012.
[17] S. Kaplan, M. A. Guvensan, A. G. Yavuz, and Y. Karalurt, “Driver Behavior Analysis for Safe Driving: A Survey,” IEEE Transactions on Intelligent Transportation Systems, Vol. 16, No. 6, pp. 3017-3032, December 2015.
[18] Y. T. Liu, Y.Y. Lin, S.L. Wu, C.H. Chuang, and C.T. Lin, “Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network,” IEEE Transactions on Neural Networks and Learning Systems, Vol. 27, No. 2, pp. 347-360, February 2016.
[19] L. Li, D. Wen, N. N. Zheng, and L. C. Shen, “Cognitive Cars: A New
Frontier for ADAS Research,” IEEE Transactions on Intelligent Transportation Systems, Vol. 13, No. 1, pp. 395-407, March 2012.
[20] S. Zeng, “A Tracking System of Multiple LiDAR Sensors Using Scan Point Matching,” IEEE Transactions on Vehicular Technology, Vol. 62, No. 6, pp. 2413-2420, July 2013.
[21] R. He, O. Renaudin, V. M. Kolmonen, K. Haneda, Z. Zhong, B. Ai, and C. Oestges,” Characterization of Quasi-Stationary Regions for Vehicle-to-Vehicle Radio Channels,” IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, pp. 2237-2251, May 2015.
校內:2023-08-01公開