簡易檢索 / 詳目顯示

研究生: 楊富順
Yang, Fuh-Shun
論文名稱: 有機奈米薄膜/鋁陰極結構於高效率高分子發光二極體之研究
Highly efficient polymer light-emitting diodes applying organic nano-layer/Al cathode
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 高分子發光二極體有機奈米薄膜Fowler-Nordhiem 穿隧定理空間電荷限制電流
外文關鍵詞: PLED, organic nano-layer, Space charge limited current, organic, PEO, Fowler-Nordhiem tunneling theory, OLED
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  考慮電子載子能有效率的注入有機發光二極體元件內,並平衡注入的電洞與電子,在有機暨高分子光電二極體元件(Organic/Polymer Light Emitting Diodes)(O/PLED)結構的設計上,必須使用Ca、Ba或者是Mg等低功函數的電極材料,用以降低有機半導體層與電極間的能帶障礙,以利於電子的有效注入。然而低功函數的電極材料對大氣中的水、氧氣反應性相當的高,使得有機發光二極體元件的陰極部分於大氣中的穩定性相當的差,元件的應用必須要有相當嚴格的封裝要求,此點大大限制其可撓式有機顯示元件的應用。

     在本研究中,我們佈置一層薄薄奈米高分子層,poly(ethylene oxide)(PEO),於高分子光電二極體元件的陰極Al和發光層MEH-PPV的接觸界面間,其元件效率為1.50 cd/A ,比使用Al 來當元件陰極的效率0.017 cd/A有著兩個等級的提升;同樣地,在PEO/Ca/Al 為陰極的元件,其效率為2.48 cd/A 比使用Ca/Al 為陰極的元件效率1.34 cd/A 有了將近兩倍的提昇;而PEO/LiF/Al 的元件效率卻可高達4.96 cd/A ,也是比LiF/Al 的元件效率2.01 cd/A 提升了兩倍之多,而且即使在高電流密度及高亮度的操作之下,元件效率仍然能維持相當的穩定性。

     元件效率如此重大的提升,我們歸因為少數載子(電子)的注入被加強了,臨界載子的注入我們可從PEO/Al的Fowler-Nordhiem(F-N)曲線背離了原本F-N穿隧定理所預測的直線來加以檢視之。

     The electroluminescent (EL) efficiencies of organic or polymer light-emitting diodes(OLED/PLED) can be promoted with better charge injection as well as the balance of the opposite charge carriers. The barrier heights for carrier injection were usually determined by the difference between the work functions of the applied electrodes with the corresponding energy levels of EL layers. Therefore, low work function metal materials, such as Ca, Ba, Mg…etc., which have lower injection barriers for electrons, are the commonly used cathode materials. However, low work function metals are highly reactive in the atmosphere. For application to flat display devices, OLEDs/PLEDs have to be strictly encapsulated inside a glass lid with desiccants to prevent degradation generated by the existing oxygen and moisture.

     In this thesis, the electroluminescent (EL) efficiency for poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene)(MEH-PPV) based polymer light-emitting diodes (PLED)was increased by two orders of magnitude while employing Al as the cathode with an ultrathin layer of poly(ethylene oxide)(PEO). EL efficiencies of MEH-PPV PLEDs for the device with PEO/Al cathode was 1.50 cd/A, which is two orders of magnitude higher than that of the Al cathode device, 0.017 cd/A, and was doubly increased from 1.34 cd/A (Ca/Al cathode) to 2.48 cd/A (PEO/Ca/Al cathode). The luminescence efficiency is 2.01 cd/A for the device applying LiF/Al cathode. The efficiency is achieved as high as 4.96 cd/A with the PEO/LiF/Al cathode. Besides, the luminescence efficiencies are sustained at the high level while the devices are biased under the high current, high brightness regime.

     The significant improvement in the device performance is attributed to the promotion of minority carrier injection (electrons), where the threshold of the injection can be characterized through the deviation of Fowler-Nordhiem tunneling prediction.

    中文摘要....................................Ⅰ 英文摘要....................................Ⅱ 致謝........................................Ⅳ 目錄........................................Ⅴ 圖目錄......................................Ⅶ 表目錄......................................XI 第一章 緒論..................................1 1-1 前言....................................1 1-2 有機電激發光元件的發展..................3 1-2-1 有機電激發光顯示器....................3 1-2-2 OLED與PLED的比較......................5 1-2-3 OLED元件發展現況......................6 1-3 研究動機與大綱..........................7 1-3-1 動機..................................7 1-3-2 大綱..................................8 第二章 高分子發光二極體之原理...............15 2-1 高分子發光二極體結構...................15 2-1-1 電壓-電流-亮度特性分析...............15 2-2 螢光理論...............................16 2-2-1 電激發光原理.........................16 2-3 電荷傳播特性...........................18 2-3-1 金屬-半導體介面接觸..................18 2-3-2 電流傳輸過程.........................19 2-4 結論 ...................................22 第三章 實驗方法步驟.........................28 3-2 發光元件組裝...........................28 3-1-1 ITO玻璃處理..........................28 3-2 發光層成膜方法.........................30 3-3 修飾層成膜方式.........................31 3-4 蒸鍍電極...............................31 3-5 光電特性量測...........................32 第四章 有機奈米薄膜於陰極修飾層之研究.......36 4-1 前言 ...................................36 4-2 實驗 ...................................37 4-2-1 佈置單一分子層的奈米線管於元件的電極和發光層的接觸界面................................37 4-2-2 塗佈一層特定的奈米結構層於元件的電極和發光層的接觸界面................................38 4-2-3 比較PEO/Al與Ca陰極之PLEDs元件........41 4-2-4 壽命測試.............................42 4-3 結論 ...................................42 第五章 探討有機奈米薄膜層之作用.............55 5-1 探討有機奈米薄膜於陽極修飾層之研究.....55 5-2 蒸鍍不同功函數金屬陰極於有機奈米薄膜層上..........................................57 5-2-1 高功函數金屬電極.....................57 5-2-2 低功函數金屬電極.....................58 5-3 探討不同有機奈米薄膜材料於相同元件結構.60 5-4 探討有機奈米薄膜層於不同發光層材料之應用..........................................62 5-5 結論...................................63 5-5-1 功函數的改變.........................63 5-5-2 奈米尖端結構.........................64 5-5-3 PEO奈米層阻絕蒸鍍金屬與發光層的作用..64 第六章 總結與建議...........................83 6-1 總結....................................83 6-2 未來工作建議............................84 參考文獻....................................86 自述........................................89

    1. M. Pope, H. P. Kallmann and P.J. Magnante, J. Chem. Phys. 38, 2042, 1963.
    2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913, 1987.
    3. R. H. Partridge, polymer 24, 733, 1982.
    4. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature 347, 539, 1990.
    5. D. Braun and A. J. Hegger, App. Phys. Lett. 58, 1982, 1991.
    6. Y.-F. Liew, H. Aziz, N.-X. Hu, H. S.-O. Chan, G. Xu, and Z. Popovic, Appl. Phys. Lett. 77, 2650, 2000.
    7. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, Appl. Phys. Lett. 65, 2922, 1994.
    8. 顧鴻壽, ”光電有機電激發光顯示器技術及應用” , pp. 5.
    9. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
    10. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor-Contacts(Clarendon, Oxford, 1988).
    11. S. Karg, M. Meier, and W. Riess, J. App. Phys. 82, 1951, 1997.
    12. I. D. Parker, J. Appl. Phys. 75, 1656, 1994.
    13. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 , 1928.
    14. R. W. Smith and A. Rose, Phys. Rev. 97, 1531, 1955.
    15. Y. Cao, G. Yu, and A. J. Heeger, Adv. Mater. 10, 917, 1998.
    16. J. Kido and T. Matsumoto, Appl. Phys. Lett. 73, 2866, 1998.
    17. T. –W. Lee, O. O. Park, L. –M. Do, T. Zyung, T. Ahn, and H. –K. Shim, J. Appl. Phys. 90, 2128, 2001.
    18. Q. Xu, J. Ouyang, Y. Yang, T. Ito, and J. Kido, Appl. Phys. Lett. 83, 4695,  2003.
    19. P. S. Davids, Sh. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett. 69, 2270, 1996.
    20. P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308, 1996.
    21. E. M. Conwell and M. W. Wu, Appl. Phys. Lett. 70, 1867, 1997.
    22. Y. Gao, K. T. Park, B. R. Hsieh, J. Appl. Phys. 73, 7894, 1993.
    23. Y. Gao, K. T. Park, B. R. Hsieh, J. Chem. Phys. 97, 6991, 1992.
    24. S. A. Jeglinski, O. Amir, X. Wei, Z. V. Vardeny, J. Shinar, T. Cerkvenik, W. Chen, T. J. Barton, Appl. Phys. Lett. 67, 3960, 1995.
    25. L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70, 152, 1997.
    26. F. Li, H. Tang, J. Anderegg, J. Shnar, Appl. Phys. Lett. 70, 1233, 1997.
    27. J. H. Park, O. O. Park, J. –W. Yu, J. K. Kim, and Y. C. Kim, Appl. Phys. Lett. 84, 1783, 2004.
    28. X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow, and Y. Cao, Appl. Phys. Lett. 84, 3522, 2004.
    29. Yu-Hua Niu, Hong Ma, Qingmin Xu, and Alex K.-Y. Jena, Appl. Phys. Lett. 86, 083504, 2005.

    下載圖示 校內:立即公開
    校外:2005-07-28公開
    QR CODE