| 研究生: |
楊富順 Yang, Fuh-Shun |
|---|---|
| 論文名稱: |
有機奈米薄膜/鋁陰極結構於高效率高分子發光二極體之研究 Highly efficient polymer light-emitting diodes applying organic nano-layer/Al cathode |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 高分子發光二極體 、有機奈米薄膜 、Fowler-Nordhiem 穿隧定理 、空間電荷限制電流 |
| 外文關鍵詞: | PLED, organic nano-layer, Space charge limited current, organic, PEO, Fowler-Nordhiem tunneling theory, OLED |
| 相關次數: | 點閱:72 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
考慮電子載子能有效率的注入有機發光二極體元件內,並平衡注入的電洞與電子,在有機暨高分子光電二極體元件(Organic/Polymer Light Emitting Diodes)(O/PLED)結構的設計上,必須使用Ca、Ba或者是Mg等低功函數的電極材料,用以降低有機半導體層與電極間的能帶障礙,以利於電子的有效注入。然而低功函數的電極材料對大氣中的水、氧氣反應性相當的高,使得有機發光二極體元件的陰極部分於大氣中的穩定性相當的差,元件的應用必須要有相當嚴格的封裝要求,此點大大限制其可撓式有機顯示元件的應用。
在本研究中,我們佈置一層薄薄奈米高分子層,poly(ethylene oxide)(PEO),於高分子光電二極體元件的陰極Al和發光層MEH-PPV的接觸界面間,其元件效率為1.50 cd/A ,比使用Al 來當元件陰極的效率0.017 cd/A有著兩個等級的提升;同樣地,在PEO/Ca/Al 為陰極的元件,其效率為2.48 cd/A 比使用Ca/Al 為陰極的元件效率1.34 cd/A 有了將近兩倍的提昇;而PEO/LiF/Al 的元件效率卻可高達4.96 cd/A ,也是比LiF/Al 的元件效率2.01 cd/A 提升了兩倍之多,而且即使在高電流密度及高亮度的操作之下,元件效率仍然能維持相當的穩定性。
元件效率如此重大的提升,我們歸因為少數載子(電子)的注入被加強了,臨界載子的注入我們可從PEO/Al的Fowler-Nordhiem(F-N)曲線背離了原本F-N穿隧定理所預測的直線來加以檢視之。
The electroluminescent (EL) efficiencies of organic or polymer light-emitting diodes(OLED/PLED) can be promoted with better charge injection as well as the balance of the opposite charge carriers. The barrier heights for carrier injection were usually determined by the difference between the work functions of the applied electrodes with the corresponding energy levels of EL layers. Therefore, low work function metal materials, such as Ca, Ba, Mg…etc., which have lower injection barriers for electrons, are the commonly used cathode materials. However, low work function metals are highly reactive in the atmosphere. For application to flat display devices, OLEDs/PLEDs have to be strictly encapsulated inside a glass lid with desiccants to prevent degradation generated by the existing oxygen and moisture.
In this thesis, the electroluminescent (EL) efficiency for poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene)(MEH-PPV) based polymer light-emitting diodes (PLED)was increased by two orders of magnitude while employing Al as the cathode with an ultrathin layer of poly(ethylene oxide)(PEO). EL efficiencies of MEH-PPV PLEDs for the device with PEO/Al cathode was 1.50 cd/A, which is two orders of magnitude higher than that of the Al cathode device, 0.017 cd/A, and was doubly increased from 1.34 cd/A (Ca/Al cathode) to 2.48 cd/A (PEO/Ca/Al cathode). The luminescence efficiency is 2.01 cd/A for the device applying LiF/Al cathode. The efficiency is achieved as high as 4.96 cd/A with the PEO/LiF/Al cathode. Besides, the luminescence efficiencies are sustained at the high level while the devices are biased under the high current, high brightness regime.
The significant improvement in the device performance is attributed to the promotion of minority carrier injection (electrons), where the threshold of the injection can be characterized through the deviation of Fowler-Nordhiem tunneling prediction.
1. M. Pope, H. P. Kallmann and P.J. Magnante, J. Chem. Phys. 38, 2042, 1963.
2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913, 1987.
3. R. H. Partridge, polymer 24, 733, 1982.
4. J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature 347, 539, 1990.
5. D. Braun and A. J. Hegger, App. Phys. Lett. 58, 1982, 1991.
6. Y.-F. Liew, H. Aziz, N.-X. Hu, H. S.-O. Chan, G. Xu, and Z. Popovic, Appl. Phys. Lett. 77, 2650, 2000.
7. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, Appl. Phys. Lett. 65, 2922, 1994.
8. 顧鴻壽, ”光電有機電激發光顯示器技術及應用” , pp. 5.
9. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
10. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor-Contacts(Clarendon, Oxford, 1988).
11. S. Karg, M. Meier, and W. Riess, J. App. Phys. 82, 1951, 1997.
12. I. D. Parker, J. Appl. Phys. 75, 1656, 1994.
13. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 , 1928.
14. R. W. Smith and A. Rose, Phys. Rev. 97, 1531, 1955.
15. Y. Cao, G. Yu, and A. J. Heeger, Adv. Mater. 10, 917, 1998.
16. J. Kido and T. Matsumoto, Appl. Phys. Lett. 73, 2866, 1998.
17. T. –W. Lee, O. O. Park, L. –M. Do, T. Zyung, T. Ahn, and H. –K. Shim, J. Appl. Phys. 90, 2128, 2001.
18. Q. Xu, J. Ouyang, Y. Yang, T. Ito, and J. Kido, Appl. Phys. Lett. 83, 4695, 2003.
19. P. S. Davids, Sh. M. Kogan, I. D. Parker, and D. L. Smith, Appl. Phys. Lett. 69, 2270, 1996.
20. P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett. 68, 3308, 1996.
21. E. M. Conwell and M. W. Wu, Appl. Phys. Lett. 70, 1867, 1997.
22. Y. Gao, K. T. Park, B. R. Hsieh, J. Appl. Phys. 73, 7894, 1993.
23. Y. Gao, K. T. Park, B. R. Hsieh, J. Chem. Phys. 97, 6991, 1992.
24. S. A. Jeglinski, O. Amir, X. Wei, Z. V. Vardeny, J. Shinar, T. Cerkvenik, W. Chen, T. J. Barton, Appl. Phys. Lett. 67, 3960, 1995.
25. L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70, 152, 1997.
26. F. Li, H. Tang, J. Anderegg, J. Shnar, Appl. Phys. Lett. 70, 1233, 1997.
27. J. H. Park, O. O. Park, J. –W. Yu, J. K. Kim, and Y. C. Kim, Appl. Phys. Lett. 84, 1783, 2004.
28. X. Y. Deng, W. M. Lau, K. Y. Wong, K. H. Low, H. F. Chow, and Y. Cao, Appl. Phys. Lett. 84, 3522, 2004.
29. Yu-Hua Niu, Hong Ma, Qingmin Xu, and Alex K.-Y. Jena, Appl. Phys. Lett. 86, 083504, 2005.