簡易檢索 / 詳目顯示

研究生: 謝紀安
Hsieh, Chi-an
論文名稱: TLR8基因多型性與C型肝炎病毒感染之相關性探討
A Functional Toll-like Receptor 8 Variant is associated with HCV infection
指導教授: 林尊湄
Lin, Tsun-Mei
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 80
中文關鍵詞: C型肝炎病毒
外文關鍵詞: hepatitis C virus, Toll-like receptor
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Toll-like receptors (TLRs) 是一種pattern recognition receptors,不僅在先天性免疫系統中扮演重要角色,具有調節控制發炎反應,同時也可以進一步啟動後天性免疫作用。其中TLR8主要表現在細胞內的exndosome胞器的磷酯雙層膜上,負責辨識多種病毒的單股RNA,活化下游的訊息傳導,促使一些與發炎相關的細胞激素以及第一型干擾素基因表現。人類C型肝炎病毒(HCV)是一種單股RNA病毒,可以被TLR8辨識,但對於TLR8基因多型性是否影響慢性HCV感染之感受性,到目前為止仍未有文獻深入探討。因此,本研究的主要目標是探討TLR8遺傳基因多型性影響其功能上的變異,進而導致HCV感染之相關機轉。首先,我們藉由PCR-RFLP方式分析312位慢性HCV感染病患和298位健康者的TLR8基因型,結果發現TLR8 起始碼Met/Val與promoter -129位置C>G的變異之間具有鏈鎖不平衡的遺傳現象,並且在男性族群中, CA allele在HCV感染組出現的頻率明顯比對照組高(17.1%比10.0%; p=0.035)。在基因多型性之功能分析實驗中,我們也發現在帶有TLR8-129C/+1A男性自願者,血球細胞中TLR8 mRNA表現較多,體外誘導刺激後,發炎細胞激素之表現量也明顯較高。相反的,刺激後產生抗病毒作用的干擾素(IFN-alpha),反而卻是在TLR8-129G/+1G基因型的男性中較高。除此之外,我們同時也證實了在TLR8-129G/+1G基因型TLR8 mRNA表現量少,是由於其產生的mRNA相對不穩定,以及在Raw264.7細胞轉染實驗中,發現TLR8-129G/+1G的promoter表現活性較低。總而言之,在我們的研究證實了TLR8基因多型性的確會影響其表現量與對於外來刺激後產生細胞激素能力,因此才可能導致TLR8多型性與HCV感染之間有相關聯存在。

    Toll-like receptors (TLRs) are characterized as pattern recognition receptors that play pivotal roles in innate immunity system, controlling inflammation responses and further instructing development of adaptive immunity. Toll-like receptor 8 (TLR8) is situated in endosomes and activates downstream signals to induce inflammatory cytokines and type I interferon through recognizing single-stranded RNA derived from various viruses, including hepatitis C virus (HCV). However, very little is known about the influence of TLR8 polymorphisms on susceptibility to chronic HCV infection. The aims of the study were to investigate the association and functional alteration of TLR8 genetic variation with HCV infection. We genotyped a population of 312 chronic HCV-infection patients and 298 healthy control subjects for TLR8 polymorphisms by PCR-RFLP. The results demonstrated the frequency of the complete linkage disequilibrium of Met/Val change at start codon and -129C>G of TLR8 at promoter and the frequency of CA allele was significantly higher in HCV-infection male group (17.1% versus 10.0%; p=0.035). In functional examination of the polymorphisms, both TLR8 mRNA expression and ex vivo inflammatory cytokines were higher among male volunteers with TLR8-129C/+1A. In contrast, IFN-alpha with effective anti-viral activity was higher in TLR8-129G/+1G. We further demonstrated the lower mRNA expression level in the TLR8-129G/+1G genotype was due to the relative instability of mRNA and lower promoter activity in Raw264.7 cells. In conclusion, our study provided the direct evidence showing TLR8 functional variants modulated the expression as well as the responds after stimulation, which may contribute to the association between TLR8 polymorphisms and HCV infection.

    Abstract (in Chinese) ……………………………………..……………......... I Abstract (in English) …………………………………………………........... II Acknowledgement …………………………………………………........... III Contents ………………………………………........................... IV Table List ………………………………………........................... V Figure List ………………………………………........................... VI Appendix List ………………………………………........................... VII Abbreviation ………………………………………........................... VIII Backgrounds ………………………………………........................... 1-13 Materials and Methods ………………………………………........................... 14-44 Results ………………………………………........................... 45-49 Discussion ………………………………………........................... 50-55 References ………………………………………........................... 56-61 Tables ………………………………………........................... 62-67 Figures ………………………………………........................... 68-77 Appendixes ………………………………………........................... 78-80

    1. Akira, S. and H. Hemmi, Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett, 2003. 85(2): p. 85-95.
    2. Kawai, T. and S. Akira, TLR signaling. Cell Death Differ, 2006. 13(5): p. 816-25.
    3. Medzhitov, R. and C.A. Janeway, Jr., Innate immunity: impact on the adaptive immune response. Curr Opin Immunol, 1997. 9(1): p. 4-9.
    4. Lombardi, V., et al., Human dendritic cells stimulated via TLR7 and/or TLR8 induce the sequential production of Il-10, IFN-gamma, and IL-17A by naive CD4+ T cells. J Immunol, 2009. 182(6): p. 3372-9.
    5. Iwasaki, A. and R. Medzhitov, Toll-like receptor control of the adaptive immune responses. Nat Immunol, 2004. 5(10): p. 987-95.
    6. Venkataraman, T., et al., Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol, 2007. 178(10): p. 6444-55.
    7. Hoffmann, J.A., The immune response of Drosophila. Nature, 2003. 426(6962): p. 33-8.
    8. Lemaitre, B., et al., The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996. 86(6): p. 973-83.
    9. Medzhitov, R., P. Preston-Hurlburt, and C.A. Janeway, Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997. 388(6640): p. 394-7.
    10. Matsushima, N., et al., Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics, 2007. 8: p. 124.
    11. Bell, J.K., et al., Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol, 2003. 24(10): p. 528-33.
    12. Slack, J.L., et al., Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J Biol Chem, 2000. 275(7): p. 4670-8.
    13. Martin, M.U. and H. Wesche, Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta, 2002. 1592(3): p. 265-80.

    14. Krishnan, J., et al., Toll-like receptor signal transduction. Exp Mol Med, 2007. 39(4): p. 421-38.
    15. Tosi, M.F., Innate immune responses to infection. J Allergy Clin Immunol, 2005. 116(2): p. 241-9; quiz 250.
    16. Kawai, T. and S. Akira, TLR signaling. Semin Immunol, 2007. 19(1): p. 24-32.
    17. Newman, K.C. and E.M. Riley, Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nat Rev Immunol, 2007. 7(4): p. 279-91.
    18. Saitoh, S. and K. Miyake, Regulatory molecules required for nucleotide-sensing Toll-like receptors. Immunol Rev, 2009. 227(1): p. 32-43.
    19. Nishiya, T. and A.L. DeFranco, Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J Biol Chem, 2004. 279(18): p. 19008-17.
    20. Sioud, M., Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol, 2005. 348(5): p. 1079-90.
    21. Beutler, B., TLR4 as the mammalian endotoxin sensor. Curr Top Microbiol Immunol, 2002. 270: p. 109-20.
    22. Diebold, S.S., et al., Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 2004. 303(5663): p. 1529-31.
    23. Heil, F., et al., Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004. 303(5663): p. 1526-9.
    24. Lund, J.M., et al., Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A, 2004. 101(15): p. 5598-603.
    25. Barton, G.M., J.C. Kagan, and R. Medzhitov, Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol, 2006. 7(1): p. 49-56.
    26. Kawai, T. and S. Akira, Antiviral signaling through pattern recognition receptors. J Biochem, 2007. 141(2): p. 137-45.
    27. Bauer, S., et al., Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A, 2001. 98(16): p. 9237-42.
    28. Takeshita, F., et al., Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J Immunol, 2001. 167(7): p. 3555-8.
    29. Vollmer, J., et al., Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med, 2005. 202(11): p. 1575-85.
    30. Krieg, A.M. and J. Vollmer, Toll-like receptors 7, 8, and 9: linking innate immunity to autoimmunity. Immunol Rev, 2007. 220: p. 251-69.
    31. Oh, D.Y., et al., A functional toll-like receptor 8 variant is associated with HIV disease restriction. J Infect Dis, 2008. 198(5): p. 701-9.
    32. Jurk, M., et al., Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol, 2002. 3(6): p. 499.
    33. Gorden, K.K., et al., Cutting edge: activation of murine TLR8 by a combination of imidazoquinoline immune response modifiers and polyT oligodeoxynucleotides. J Immunol, 2006. 177(10): p. 6584-7.
    34. Gorden, K.K., et al., Oligodeoxynucleotides differentially modulate activation of TLR7 and TLR8 by imidazoquinolines. J Immunol, 2006. 177(11): p. 8164-70.
    35. Jurk, M., et al., Modulating responsiveness of human TLR7 and 8 to small molecule ligands with T-rich phosphorothiate oligodeoxynucleotides. Eur J Immunol, 2006. 36(7): p. 1815-26.
    36. Qin, J., et al., TLR8-mediated NF-kappaB and JNK activation are TAK1-independent and MEKK3-dependent. J Biol Chem, 2006. 281(30): p. 21013-21.
    37. Lu, R., P.A. Moore, and P.M. Pitha, Stimulation of IRF-7 gene expression by tumor necrosis factor alpha: requirement for NFkappa B transcription factor and gene accessibility. J Biol Chem, 2002. 277(19): p. 16592-8.
    38. Saito, I., et al., Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci U S A, 1990. 87(17): p. 6547-9.
    39. Shimizu, Y.K., et al., Early events in hepatitis C virus infection of chimpanzees. Proc Natl Acad Sci U S A, 1990. 87(16): p. 6441-4.
    40. Abe, T., et al., Hepatitis C virus nonstructural protein 5A modulates the toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines. J Virol, 2007. 81(17): p. 8953-66.
    41. Pileri, P., et al., Binding of hepatitis C virus to CD81. Science, 1998. 282(5390): p. 938-41.

    42. Flint, M. and J.A. McKeating, The role of the hepatitis C virus glycoproteins in infection. Rev Med Virol, 2000. 10(2): p. 101-17.
    43. Rosa, D., et al., A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells. Proc Natl Acad Sci U S A, 1996. 93(5): p. 1759-63.
    44. Spahn, C.M., et al., Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science, 2001. 291(5510): p. 1959-62.
    45. Otto, G.A., et al., Ribosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interaction. RNA, 2002. 8(7): p. 913-23.
    46. Bartenschlager, R., M. Frese, and T. Pietschmann, Novel insights into hepatitis C virus replication and persistence. Adv Virus Res, 2004. 63: p. 71-180.
    47. Fried, M.W., et al., Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med, 2002. 347(13): p. 975-82.
    48. Martin, H.J., et al., Manipulation of the toll-like receptor 7 signaling pathway by Epstein-Barr virus. J Virol, 2007. 81(18): p. 9748-58.
    49. Ferreon, J.C., et al., Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease. J Biol Chem, 2005. 280(21): p. 20483-92.
    50. Li, K., et al., Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A, 2005. 102(8): p. 2992-7.
    51. Imahara, S.D. and G.E. O'Keefe, Genetic determinants of the inflammatory response. Curr Opin Crit Care, 2004. 10(5): p. 318-24.
    52. Turvey, S.E. and T.R. Hawn, Towards subtlety: understanding the role of Toll-like receptor signaling in susceptibility to human infections. Clin Immunol, 2006. 120(1): p. 1-9.
    53. van Deventer, S.J., Cytokine and cytokine receptor polymorphisms in infectious disease. Intensive Care Med, 2000. 26 Suppl 1: p. S98-102.
    54. Schroder, N.W. and R.R. Schumann, Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis, 2005. 5(3): p. 156-64.
    55. Hawn, T.R., et al., A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease. J Exp Med, 2003. 198(10): p. 1563-72.
    56. Merx, S., et al., Characterization and functional investigation of single nucleotide polymorphisms (SNPs) in the human TLR5 gene. Hum Mutat, 2006. 27(3): p. 293.
    57. Gergely, P., Jr., et al., Lack of genetic association of the Toll-like receptor 4 (TLR4) Asp299Gly and Thr399Ile polymorphisms with spondylarthropathies in a Hungarian population. Rheumatology (Oxford), 2006. 45(10): p. 1194-6.
    58. Rohde, G., et al., Association of the ASP299GLY TLR4 polymorphism with COPD. Respir Med, 2006. 100(5): p. 892-6.
    59. Kang, T.J., S.B. Lee, and G.T. Chae, A polymorphism in the toll-like receptor 2 is associated with IL-12 production from monocyte in lepromatous leprosy. Cytokine, 2002. 20(2): p. 56-62.
    60. Schott, E., et al., A Toll-like receptor 7 single nucleotide polymorphism protects from advanced inflammation and fibrosis in male patients with chronic HCV-infection. J Hepatol, 2007. 47(2): p. 203-11.
    61. Thomas, A., et al., Investigating Toll-like receptor agonists for potential to treat hepatitis C virus infection. Antimicrob Agents Chemother, 2007. 51(8): p. 2969-78.
    62. Zhang, S.Y., et al., Human Toll-like receptor-dependent induction of interferons in protective immunity to viruses. Immunol Rev, 2007. 220: p. 225-36.
    63. Davila, S., et al., Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet, 2008. 4(10): p. e1000218.
    64. Moller-Larsen, S., et al., Association analysis identifies TLR7 and TLR8 as novel risk genes in asthma and related disorders. Thorax, 2008. 63(12): p. 1064-9.
    65. Chen, Z., et al., Toll-like receptor 8 polymorphism and coronary artery disease. Mol Biol Rep, 2008.
    66. Cheng, P.L., et al., Genetic polymorphisms of viral infection-associated Toll-like receptors in Chinese population. Transl Res, 2007. 150(5): p. 311-8.
    67. Huang, W.S., et al., Prediction of viremia for cases of hepatitis C virus (HCV) infection using a third-generation anti-HCV enzyme immunoassay test. Hepatogastroenterology, 2005. 52(63): p. 893-6.
    68. Lu, S.N., et al., Is it possible to diagnose acute hepatitis C virus (HCV) infection by a rising anti-HCV titre rather than by seroconversion? J Viral Hepat, 2004. 11(6): p. 563-70.

    69. Chen, T.Y., et al., Impact of serum levels and gene polymorphism of cytokines on chronic hepatitis C infection. Transl Res, 2007. 150(2): p. 116-21.
    70. Dai, C.Y., et al., Polymorphism of interferon-gamma gene at position +874 and clinical characteristics of chronic hepatitis C. Transl Res, 2006. 148(3): p. 128-33.
    71. Huang, Y., et al., A functional SNP of interferon-gamma gene is important for interferon-alpha-induced and spontaneous recovery from hepatitis C virus infection. Proc Natl Acad Sci U S A, 2007. 104(3): p. 985-90.
    72. Hornung, V., et al., RNA recognition via TLR7 and TLR8. Handb Exp Pharmacol, 2008(183): p. 71-86.
    73. Shevchenko, A.I., et al., [Chromatin modifications during X-chromosome inactivation in female mammals]. Genetika, 2006. 42(9): p. 1225-34.
    74. Busque, L., et al., Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood, 1996. 88(1): p. 59-65.
    75. Forsbach, A., et al., Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol, 2008. 180(6): p. 3729-38.
    76. Larange, A., et al., TLR7 and TLR8 agonists trigger different signaling pathways for human dendritic cell maturation. J Leukoc Biol, 2009. 85(4): p. 673-83.
    77. Houseley, J. and D. Tollervey, The many pathways of RNA degradation. Cell, 2009. 136(4): p. 763-76.
    78. Triantafilou, K., et al., Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent. Cell Microbiol, 2005. 7(8): p. 1117-26.
    79. Li, L., et al., Gene regulation by Sp1 and Sp3. Biochem Cell Biol, 2004. 82(4): p. 460-71.
    80. Vines, C.R. and D.A. Weigent, Identification of SP3 as a negative regulatory transcription factor in the monocyte expression of growth hormone. Endocrinology, 2000. 141(3): p. 938-46.
    81. Schon, M.P. and M. Schon, TLR7 and TLR8 as targets in cancer therapy. Oncogene, 2008. 27(2): p. 190-9.
    82. Smits, E.L., et al., The Toll-like receptor 7/8 agonist resiquimod greatly increases the immunostimulatory capacity of human acute myeloid leukemia cells. Cancer Immunol Immunother, 2009.

    下載圖示 校內:2014-08-24公開
    校外:2014-08-24公開
    QR CODE