簡易檢索 / 詳目顯示

研究生: 江國豪
Jiang, Guo-Hao
論文名稱: 探討具有非對稱側鏈之共軛高分子於有機電化學電晶體之表現
Investigation of Conjugated Polymers with Asymmetric Side Chains in Organic Electrochemical Transistors
指導教授: 林彥丞
Lin, Yan-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 75
中文關鍵詞: 有機電化學電晶體共軛高分子枝狀烷基側鏈醚基側鏈非對稱側鏈
外文關鍵詞: electrochemical transistors, conjugated polymers, oligoether side chains, asymmetric side chain
相關次數: 點閱:35下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機電化學電晶體 (OECTs) 是一種非勻相的半導體元件。因為其將離子信號轉換為電信號的能力,且具有低功耗和靈活性,成為生醫感測器和仿生神經突觸的理想選擇,尤其適合用於可穿戴和植入式醫療設備。OECT元件的性能直接與聚合物通道層的導電性和離子導電性相關。然而這些性能通常存在相互抑制的關係,因此需要對聚合物材料進行系統設計以優化設備性能。在現有的研究中,提升OECT的性能已成為研究人員的主要目標。通過引入親水性側支鏈 (寡聚醚) 和疏水性側支鏈 (枝狀烷基) 至主鏈為異靛藍-雙噻吩 (isoindigo-bithiophene) 的聚合物中,進而了解高分子層的親水性質對離子的摻雜與滲透優化對於元件性能的提升。另外比較對稱性和非對稱側支鏈組合,探討聚合物的共面性、電子遷移率和穩定性對於元件性能的影響。對稱側支鏈設計如 P(C,C) 和 P(O,O) 展現不錯的參數,但非對稱側支鏈設計 P(C,O) 的表現則更為優異。作為應用於OECT這種非勻相的半導體元件的高分子,非對稱側鏈設計 P(C,O) 展示了優越的OECT性能,其電洞遷移率與電容的乘積 (μhC* = 65.16 F cm−1 V−1 s−1),電洞遷移率 (μh = 0.78 cm² V−1 s−1),以及快速的響應速度 (tr = 5.41 s, tf = 0.035 s)。另外聚焦在元件穩定性上,P(C,O)在保持良好電容的同時展示了卓越的薄膜穩定性,可以在OECT反覆運行下維持良好的膜況,電流的維持率 (ID retention) 為 77.5%。使用異靛藍-雙噻吩作為主鏈高分子,並結合親水性側支鏈與疏水性側支鏈,非對稱組合的高分子擁有優異的共面性和性能。引入寡聚醚側支鏈還賦予較好的親水性,提高離子滲透性。非對稱結構有助於增強共面性和結構穩定性,從而在薄膜澎潤後改善結晶性能。在我的研究中給出了一種在OECT元件上,通過非對稱側支鏈設計同時實現高電洞遷移率和元件穩定性的平衡方法,進而為未來的高性能OECT設計提供參考。

    Organic electrochemical transistors (OECTs) have become ideal choices for biosensors and artificial synapses due to their ability to convert ion signals into electrical signals, as well as their low power consumption and application flexibility. These attributes make OECTs particularly suitable for wearable and implantable bio-medical devices. The performance of OECT devices is directly related to the conductive and ion-conductive properties of the polymer channel layer. However, these properties often exhibit a mutually inhibitory relationship, necessitating a systematic design of polymer materials to optimize device performance. Enhancing the performance of OECTs has been a primary goal in recent research. By introducing hydrophilic and hydrophobic side chains into poly(isoindigo-bithiophene)-based (PII2T) polymers and comparing symmetric and asymmetric side chain combinations, improvements in coplanarity, mobility, hydrophilicity, and stability can be achieved. While symmetric side chain designs, such as P(C,C) and P(O,O), have demonstrated certain device parameters like mobility and capacitance, the asymmetric side chain design P(C,O) has shown superior performance. Specifically, the asymmetric side chain design P(C,O) exhibited outstanding OECT performance, with a product of mobility and capacitance (μhC* = 65.16 F cm−1 V−1 s−1), excellent hole mobility (0.78 cm² V−1 s−1), and fast response speed (tr = 5.41 s, tf = 0.035 s). Additionally, P(C,O) showed superior stability while maintaining good capacitance, with a charge retention (ID retention) of 77.5%. Using PII2T as the backbone and combining it with branched alkyl and oligoether side chains resulted in a polymer with an asymmetric combination that exhibited excellent coplanarity and performance. The incorporation of oligoether side chains also imparted strong hydrophilicity, facilitating high ion permeability. The asymmetric structure contributed to enhanced coplanarity and structural stability, resulting in improved crystalline properties after swelling. This study presents a balanced approach to achieving both high mobility and stability in OECTs through asymmetric side chain design, aiming to provide a reference for future high-performance OECT designs.

    中文摘要 i ABSTRACT ii 誌謝 iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xiii CHAPTER 1. INTRODUCTION 1 1.1 Introduction of Conjugated Polymers 1 1.2 Introduction of Organic Electrochemical Transistors 3 1.3 Polymer Side Chain Design for Mobility and Stability 7 1.4 Research Objectives 9 CHAPTER 2. The Synthesis of Isoindigo-Bithiophene-based Polymers P(C,C), P(C,O), and P(O,O) 11 2.1 Material 11 2.2 Synthesis of (E)-6,6'-dibromo-[3,3'-biindolinylidene]-2,2'-dione (Br-isoindogo) 13 2.3 Synthesis of 2,5,8,11-tetraoxatridecan-13-yl 4-methyl-benzenesulfonate (TsO) 14 2.4 Synthesis of the side chain 22-bromo-2,5,8,11,14-pentaoxadocosane (TEG-C8-Br) 15 2.5 Synthesis of the side chain 9-(bromomethyl)octadecane (OD-Br) 17 2.6 Synthesis of monomer (E)-6,6'-dibromo-1-(2,5,8,11,14-pentaoxadocosan-22-yl)-1'-(2-octylundecyl)-[3,3'-biindolinylidene]-2,2'-dione, M(C,O) 18 2.7 Polymerization of the studied polymers, P(C,O) 19 CHAPTER 3. The Applications in Organic Electrochemical Transistors with Asymmetric Side-Chain Modified Conjugated Polymers 22 3.1 Background 22 3.1.1 Characterization 23 3.1.2 Fabrication and Measurement of OECT. 24 3.2 Results and Discussion 26 3.2.1 Physical and Electrochemical Properties of the Polymers 26 3.2.2 In-Situ Electrochemical-Optical Spectroscopy Studies 30 3.2.3 Polymer Film Morphologies 33 3.2.4 OECT Device Characteristics 40 3.3 Summary 52 CHAPTER 4. Conclusion and Future Works 53 4.1 Conclusion 53 4.2 Future Works 55 CHAPTER 5. Reference 57

    1. Kim, M., et al., Donor–Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report. Advanced Functional Materials, 2019. 30(20).
    2. Ding, L., et al., Polymer Semiconductors: Synthesis, Processing, and Applications. Chem Rev, 2023. 123(12): p. 7421-7497.
    3. Ashizawa, M., et al., Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Progress in Polymer Science, 2020. 100.
    4. Liu, T., et al., Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers. Nat Commun, 2023. 14(1): p. 8454.
    5. Liu, W., et al., High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat Mater, 2023. 22(6): p. 737-745.
    6. Lin, Y.C., et al., Asymmetric Side-Chain Engineering of Isoindigo-Based Polymers for Improved Stretchability and Applications in Field-Effect Transistors. ACS Appl Mater Interfaces, 2019. 11(37): p. 34158-34170.
    7. Yu, X., et al., Intrinsically Stretchable Polymer Semiconductors with Good Ductility and High Charge Mobility through Reducing the Central Symmetry of the Conjugated Backbone Units. Adv Mater, 2023. 35(17): p. e2209896.
    8. Zheng, Y., et al., Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. J Am Chem Soc, 2022. 144(11): p. 4699-4715.
    9. Yang, W., et al., High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors: The Impacts of Halogen Functionalization. Adv Mater, 2024. 36(4): p. e2305416.
    10. Park, J.S., et al., Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. Adv Mater, 2022. 34(31): p. e2201623.
    11. Li, Z., et al., A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy & Environmental Science, 2019. 12(1): p. 157-163.
    12. Yen, H.-C., Y.-C. Lin, and W.-C. Chen, Modulation of the Hydrophilicity on Asymmetric Side Chains of Isoindigo-Based Polymers for Improving Carrier Mobility–Stretchability Properties. Macromolecules, 2021. 54(4): p. 1665-1676.
    13. Rivnay, J., et al., Organic electrochemical transistors. Nature Reviews Materials, 2018. 3(2).
    14. Ohayon, D., V. Druet, and S. Inal, A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev, 2023. 52(3): p. 1001-1023.
    15. Sedghamiz, T., et al., What Can We Learn about PEDOT:PSS Morphology from Molecular Dynamics Simulations of Ionic Diffusion? Chemistry of Materials, 2023. 35(14): p. 5512-5523.
    16. Flagg, L.Q., et al., Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors. J Am Chem Soc, 2019. 141(10): p. 4345-4354.
    17. Savva, A., et al., Influence of Water on the Performance of Organic Electrochemical Transistors. Chemistry of Materials, 2019. 31(3): p. 927-937.
    18. Sun, Z., et al., Carboxyl-Alkyl Functionalized Conjugated Polyelectrolytes for High Performance Organic Electrochemical Transistors. Chem Mater, 2023. 35(21): p. 9299-9312.
    19. Feng, K., et al., High-Performance n-Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency. Adv Sci (Weinh), 2023. 10(29): p. e2302629.
    20. Wang, Y., et al., Acceptor Functionalization via Green Chemistry Enables High‐Performance n‐Type Organic Electrochemical Transistors for Biosensing, Memory Applications. Advanced Functional Materials, 2023. 34(15).
    21. Huang, Z., et al., Azonia-Naphthalene: A Cationic Hydrophilic Building Block for Stable N-Type Organic Mixed Ionic-Electronic Conductors. Angew Chem Int Ed Engl, 2024. 63(6): p. e202313260.
    22. Yu, Y., et al., n‐Type Glycolated Imide‐Fused Polycyclic Aromatic Hydrocarbons with High Capacity for Liquid/Solid‐Electrolyte‐based Electrochemical Devices. Advanced Functional Materials, 2023. 33(22).
    23. Yuan, Y., et al., Asymmetric Hybrid Siloxane Side Chains for Enhanced Mobility and Mechanical Properties of Diketopyrrolopyrrole-Based Polymers. Macromol Rapid Commun, 2022. 43(3): p. e2100636.
    24. Xue, G., et al., Symmetry Breaking in Side Chains Leading to Mixed Orientations and Improved Charge Transport in Isoindigo-alt-Bithiophene Based Polymer Thin Films. ACS Appl Mater Interfaces, 2017. 9(30): p. 25426-25433.
    25. Wang, Y., et al., Green Synthesis of Lactone‐Based Conjugated Polymers for n‐Type Organic Electrochemical Transistors. Advanced Functional Materials, 2022. 32(16).
    26. Lin, Y.-C., et al., Intrinsically stretchable isoindigo–bithiophene conjugated copolymers using poly(acrylate amide) side chains for organic field-effect transistors. Polymer Chemistry, 2019. 10(38): p. 5172-5183.
    27. Mooney, M., et al., Asymmetric side-chain engineering in semiconducting polymers: a platform for greener processing and post-functionalization of organic electronics. Polymer Chemistry, 2023. 14(5): p. 562-572.
    28. Keene, S.T., et al., Hole-limited electrochemical doping in conjugated polymers. Nat Mater, 2023. 22(9): p. 1121-1127.
    29. Teng, X., et al., Ion effects on salt-in-water electrolyte gated polymer electrochemical transistors. Organic Electronics, 2023. 120.
    30. Chuo, S., et al., Enhancing charge transport in isoindigo-based donor–acceptor copolymers by combining ionic doping with polar alkoxy side chains. RSC Applied Interfaces, 2024.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE