| 研究生: |
陳俐穎 Chen, Li-Ying |
|---|---|
| 論文名稱: |
人類肝癌衍生生長因子的PWWP結構區域交換與SMYD1交互作用在基因調控的關連 Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor for gene regulation |
| 指導教授: |
陳俊榮
Chen, Chun-Jung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 人類肝癌衍生生長因子 、PWWP 區域 、SMYD1 啟動子 、結構區域互換 |
| 外文關鍵詞: | HDGF, PWWP domain, SMYD1, domain swapping |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類肝癌衍生生長因子(Human hepatoma-derived growth factor)利用其在序列N端具有高度保留性的PWWP區域與染色體結合以及變異性較高的序列C端進行下游基因調控,使之參與不同的細胞過程,如:血管病變,星形膠質細胞增殖以及心血管分化,而過度表現的人類肝癌衍生生長因子與許多種癌症以及心肌不正常發育有著高度的關聯性。本研究希望能探討人類肝癌衍生生長因子與染色體上特殊的啟動子結合前後,其結構上的變化,了解在基因調控方面,人類肝癌衍生生長因子與DNA的交互作用以便未來應用於藥物設計方面。研究中以點突變方式提高了人類衍生生長因子於大腸桿菌表現系統中的表現量,並證明位於序列N端的PWWP區域於DNA與nucleolin的結合扮演重要角色;同時也解析出PWWP區域未與DNA結合以及與SMYD1啟動子結合後的結構。PWWP區域與SMYD1結合後,其結構會由原本單聚體藉由高度擺動性的loop2(hinge loop)形成二聚體並產生結構區域交換現象(3D domain swapping),原來擺動度高的loop2則會變成穩定的α螺旋(αC),並且藉由位於C/N terminus的loop1和4上的Lys19、Gly22、Arg79以及Lys80與10個鹼基對的SMYD1上之小溝(minor groove)結合。本研究解析出第一個PWWP-SMYD1複合體結構並發現與DNA形成複合體後,會造成結構區域交換現象,將其結構與功能性研究結合後,進一步提供人類肝癌衍生生長因子與DNA結合機制的新觀點。
Domain swapping and SMYD1 interactions
with the PWWP domain of
human hepatoma-derived growth factor for gene regulation
Li-Ying Chen
Chun-Jung Chen
Department of Biotechnology and Bioindustry Sciences
College of Bioscience and Biotechnology
SUMMARY
Human Hepatoma-derived growth factor (human HDGF) is highly expressed in the tumour
cell lines and is related to various cancers. The expression yield of HDGF could be increased
by rare codon mutation for E. coli, whereas the stability of HDGF and the PWWP domain
can be optimized by the addition of ligand, protease inhibitor or chelator agent. The apo
PWWP domain contains four β-strands, two α-helices, a flexible loop2, and the conserved
PWWP motif locates on the loop1. The HDGF PWWP domain undergoes domain swapping
to transform its overall conformation from monomeric globular folding into an extended
dimeric structure upon 10-bp SMYD1 (SET-MYND domain) binding dramatically. The
flexible loop2 functions as a hinge loop with the partially built structure in the apo PWWP
domain, refolds into a visible and rigid α-helix in the DNA complex notably. The swapped
PWWP domain interacts with the minor groove of 10-bp SMYD1 via residues Lys19, Gly22,
Arg79 and Lys80 with variable characters on loops 1 and 4 at the swapped C/N terminus,
and the structure becomes more stable and rigid than the apo form. Together with
physiological assays, these novel structural findings may provide new insights into the
mechanism of DNA binding and the functional process of HDGF.
Key words: HDGF, PWWP domain, SMYD1, domain swapping
INTRODUCTION
Human HDGF belongs to the HDGF-related protein (HRP) family and is highly expressed
in the tumour cell lines, developing heart and the normal tissue ubiquitously with angiogenic
and mitogenic activities (Yang and Everett, 2009). HDGF participates in different cellular
processes, such as cardiovascular differentiation (Everett, 2002), the formation of vascular
lesion (Everett et al., 2000) and astrocyte proliferation (Crossin et al., 1997). The over-
expressed HDGF is related to several kinds of cancers such as hepatocellular carcinoma
(Chen et al., 2015), non-small cell lung cancer (Iwasaki et al., 2005), etc.
Human HDGF comprises the chromatin-associated N-terminal PWWP domain which is
capable of binding the nonspecific DNA, specific SMYD1 promoter and histone (Yang and
Everett, 2007). Some of the proteins in eukaryotes contain the highly conserved PWWP
domains from unicellular organisms to human species and most of them belong to
chromatin-associated proteins (Rondelet et al., 2016). The variable C-terminus of HDGF
which participates in various cellular processes is in charge of translocation and gene
regulation. (Kishima et al., 2002; Wang et al., 2011).
To date, the conserved PWWP domain and complexes with histone-related peptides
structures have been solved (Qiu et al., 2002; Sue et al., 2004; Vezzoli et al., 2010; Wu et
al., 2011). However, the interaction between DNA and HDGF remains unclear because of a
lack of comparatively of essential knowledge about its exact structure in protein-DNA
complex. In the thesis, we report the first crystal structures of the human HDGF PWWP
domain with a 10-bp SMYD1 in complex and its unbound apo form. Our studies provide
new insights into the PWWP-DNA interaction which could facilitate study about the role of
the PWWP domain in nucleosomal context.
MATERIALS AND METHODS
The DNA sequence of HDGF has been mutated on the rare codon from the library of human
fetal brain cDNA (Stratagene, La Jolla, CA) (Hu et al., 2003). The constructs of HDGF and
the PWWP domain have constructed into artificial vectors between NdeI and EcoRI
restriction sites for further production of the recombinant N-terminal His-tagged fusion
protein.
The HDGF and the PWWP domain constructs were transformed and over-expressed in
Escherichia coli (E. coli) BL21 (DE3) and BL21-Codon Plus ® -RIL, respectively.
Overexpression of HDGF and the PWWP domain were induced with 0.5 mM and 1 mM
IPTG (isopropyl β-D-thio-galactopyranoside) for overnight at 37 °C, respectively. The His-
tag fusion proteins were purified from the supernatant after sonication based on Ni 2+ -NTA
agarose column (GE healthcare). The endogenous DNA from E. coli was then removed from
the purified proteins were then removed by the anion-exchange chromatography (Hitrap Q)
owing to the distinct pI values between DNA and proteins. The protein with various lengths
designed SMYD1 complexes were further collected by size-exclusion chromatography
(Superdex-200).
Crystallization trials were performed using several crystal-screening kits with 96-well plates
(JET Biofil) based on the hanging-drop vapor-diffusion method. The apo PWWP domain
crystals appeared under the condition containing sodium chloride (0.2 M) and polyethylene
glycol (PEG) 4000 (25%, w/v) and Tris (0.1 M, pH 8.5). The crystals of PWWP-SMYD1
complex were obtained in a condition containing sodium phosphate dibasic (0.09 M),
sodium nitrate (0.09 M), PEG 1000 (12.5%), PEG 4000 (12.5%, w/v) and Tris; Bicine (0.1
M, pH 8.5).
The initial phase of the apo PWWP domain has been solved by the HDGF2 PWWP domain
(PDB entry: 3QBY) with one PWWP domain in asymmetric unit, and the structure was
refined to 3.3 Å resolution, whereas 10-bp SMYD1 in asymmetric unit was determined at
2.84 Å . All structures were determined by the molecular replacement method with the
program, Molrep (Vagin and Teplyakov, 1997).
RESULTS AND DISCUSSION
We have improved the expression yield of human HDGF by rare codon mutation for
structural studies, confirmed that the binding ability of both NCL and DNA for HDGF is
through its N-terminal PWWP domain and the addition of SMYD1 interferes the binding
capability of NCL for HDGF, and determined the first crystal structures of human HDGF
PWWP domain with 10-bp SMYD1 complex and its apo form, respectively.
The apo PWWP domain reveals a monomeric structure with four β-strands, two α-helices
and a flexible loop2 with diminished electron density. However, the PWWP domain
undertakes domain swapping to alter markedly its secondary structures and transform the
overall conformation through a globular monomer into an extended dimer with newly
formed αC upon DNA binding. The flexible loop2 in the apo PWWP domain is replaced by
newly formed αC upon DNA binding in the PWWP-SMYD1 complex and functions as hinge
loop which participates in domain swapping. (Fig. 1).
The PWWP domain interacts with the minor groove of DNA through the residues with
variable characters, Lys19, Gly22, Arg79 and Lys80, at DNA binding loops: 1 and 4 from
two chains at C/N terminus of the swapped dimer. Together with physiological assays, these
novel structural findings may provide new insights into the mechanism of DNA binding and
the functional process of HDGF.
The part of potential DNA binding residues in the structures monitored from NMR chemical
shift perturbation (PDB entries: 2B8A, 2M16, 2GFU) are consistent with the DNA-binding
area in the HDGF PWWP-SMYD1 complex, suggesting that these PWWP domains may
react to DNA through loops: 1 and 4.
Figure 1. The density at hinge loop region in the apo PWWP domain and PWWP-
SMYD1 complex and schematic representation of the dimeric swapped PWWP.
(A) The incomplete density causes the difficulty of structure trace from Ala36 to Lys44 (blue
mesh, 2F o -F c at 1.5 σ). (B) The well determined and defined αC structure from Asp31 to
Lys44 could be covered within the continuous density (blue mesh, 2F o -F c at 1.5 σ). (C) The
involved swapped region is shown in green and the other regions are in red in one monomer
(left panel). The other molecule of a dimer is shown in gray (right panel). The DNA-binding
loops are shown in blue, whereas the residues of the PWWP motif are indicated in stick.
CONCLUSION
In this study, we have increased the expression yield of HDGF for structural studies
successfully, confirmed that the binding capability of both DNA and NCL for HDGF through
its N-terminal PWWP domain and addition of SMYD1 interferes the binding capability of
NCL for HDGF, and determined the first crystal structures of human HDGF PWWP domain
with 10-bp SMYD1 complex and its apo form at 2.84 Å and 3.3 Å resolution, respectively.
The PWWP domain undertakes domain swapping to alter markedly its overall conformation
through a globular monomer into an extended dimer upon DNA binding. The PWWP-DNA
complex is more stable and rigid compared to the apo form. The PWWP domain interacts
with the minor groove of DNA through the residues with variable characters at DNA binding
loops: 1 and 4 from two chains at C/N terminus of the swapped dimer. Together with
physiological assays, these novel structural findings may provide new insights into the
mechanism of DNA binding and the functional process of HDGF.
Adrio, J. L., and Demain, A. L. Recombinant organisms for production of industrial products. Bioengineered Bugs 1, 116-131, 2010.
Angov, E., Legler, P. M., and Mease, R. M. Adjustment of codon usage frequencies by codon harmonization improves protein expression and folding. Methods in Molecular Biology 705, 1-13, 2011.
Bennett, M. J., Schlunegger, M. P., and Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. Protein Science 4, 2455-2468, 1995.
Burgess-Brown, N. A., Sharma, S., Sobott, F., Loenarz, C., Oppermann, U., and Gileadi, O. Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expression and Purification 59, 94-102, 2008.
Chen, L. Y., Huang, Y. C., Huang, S. T., Hsieh, Y. C., Guan, H. H., Chen, N. C., Chuankhayan, P., Yoshimura, M., Tai, M. H., and Chen, C. J. Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor. Scientific Reports 8, 287, 2018.
Chen, S. C., Hu, T. H., Huang, C. C., Kung, M. L., Chu, T. H., Yi, L. N., Huang, S. T., Chan, H. H., Chuang, J. H., Liu, L. F., Wu, H. C., Wu, D. C., Chang, M. C., and Tai, M. H. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget 6, 16253-16270, 2015.
Chen, V. B., Arendall, W. B., III, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D 66, 12-21, 2010.
Chen, X., Yun, J., Fei, F., Yi, J., Tian, R., Li, S., and Gan, X. Prognostic value of nuclear hepatoma-derived growth factor (HDGF) localization in patients with breast cancer. Pathology - Research and Practice 208, 437-443, 2012.
Cherepanov, P., Maertens, G., Proost, P., Devreese, B., Van Beeumen, J., Engelborghs, Y., De Clercq, E., and Debyser, Z. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. Journal of Biological Chemistry 278, 372-381, 2003.
Choe, W. S., and Middelberg, A. P. Selective precipitation of DNA by spermine during the chemical extraction of insoluble cytoplasmic protein. Biotechnology Progress 17, 1107-1113, 2001.
Ciuffi, A., Llano, M., Poeschla, E., Hoffmann, C., Leipzig, J., Shinn, P., Ecker, J. R., and Bushman, F. A role for LEDGF/p75 in targeting HIV DNA integration. Nature Medicine 11, 1287-1289, 2005.
Crossin, K. L., Tai, M. H., Krushel, L. A., Mauro, V. P., and Edelman, G. M. Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proceedings of the National Academy of Sciences of the United States of America 94, 2687-2692, 1997.
del Solar, G., and Espinosa, M. Plasmid copy number control: an ever-growing story. Molecular Microbiology 37, 492-500, 2000.
Demain, A. L., and Vaishnav, P. Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances 27, 297-306, 2009.
Di Donato, A., Cafaro, V., Romeo, I., and D'Alessio, G. Hints on the evolutionary design of a dimeric RNase with special bioactions. Protein Science 4, 1470-1477, 1995.
Diederichs, K., Jacques, S., Boone, T., and Karplus, P. A. Low-resolution structure of recombinant human granulocyte-macrophage colony stimulating factor. Journal of Molecular Biology 221, 55-60, 1991.
Dietz, F., Franken, S., Yoshida, K., Nakamura, H., Kappler, J., and Gieselmann, V. The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochemical Journal 366, 491-500, 2002.
Eidahl, J. O., Crowe, B. L., North, J. A., McKee, C. J., Shkriabai, N., Feng, L., Plumb, M., Graham, R. L., Gorelick, R. J., Hess, S., Poirier, M. G., Foster, M. P., and Kvaratskhelia, M. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Research 41, 3924-3936, 2013.
Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. Features and development of Coot. Acta Crystallographica Section D 66, 486-501, 2010.
Enomoto, H., Yoshida, K., Kishima, Y., Okuda, Y., and Nakamura, H. Participation of hepatoma-derived growth factor in the regulation of fetal hepatocyte proliferation. Journal of Gastroenterology 37 Suppl 14, 158-161, 2002.
Everett, A. D. Identification, cloning, and developmental expression of hepatoma-derived growth factor in the developing rat heart. Developmental Dynamics 222, 450-458, 2001.
Everett, A. D., Lobe, D. R., Matsumura, M. E., Nakamura, H., and McNamara, C. A. Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. Journal of Clinical Investigation 105, 567-575, 2000.
Everett, A. D., Narron, J. V., Stoops, T., Nakamura, H., and Tucker, A. Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. American Journal of Physiology-Lung Cellular and Molecular Physiology 286, L1194-L1201, 2004.
Everett, A. D., Stoops, T., and McNamara, C. A. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. Journal of Biological Chemistry 276, 37564-37568, 2001.
Fernandez-Castane, A., Vine, C. E., Caminal, G., and Lopez-Santin, J. Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures. Journal of Biotechnology 157, 391-398, 2012.
Goodman, D. B., Church, G. M., and Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475-479, 2013.
Gottlieb, P. D., Pierce, S. A., Sims, R. J., Yamagishi, H., Weihe, E. K., Harriss, J. V., Maika, S. D., Kuziel, W. A., King, H. L., Olson, E. N., Nakagawa, O., and Srivastava, D. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nature Genetics 31, 25-32, 2002.
Gustafsson, C., Govindarajan, S., and Minshull, J. Codon bias and heterologous protein expression. Trends in Biotechnology 22, 346-353, 2004.
Holcomb, J., Spellmon, N., Zhang, Y., Doughan, M., Li, C., and Yang, Z. Protein crystallization: Eluding the bottleneck of X-ray crystallography. Aims Press Biophysics 4, 557-575, 2017.
Horibata, S., Vo, T. V., Subramanian, V., Thompson, P. R., and Coonrod, S. A. Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells. Journal of Visualized Experiments : JoVE, 52727, 2015.
Hu, T. H., Huang, C. C., Liu, L. F., Lin, P. R., Liu, S. Y., Chang, H. W., Changchien, C. S., Lee, C. M., Chuang, J. H., and Tai, M. H. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98, 1444-1456, 2003.
Iwasaki, T., Nakagawa, K., Nakamura, H., Takada, Y., Matsui, K., and Kawahara, K. Hepatoma-derived growth factor as a prognostic marker in completely resected non-small-cell lung cancer. Oncology Reports 13, 1075-1080, 2005.
Karchin, J. M., Ha, J. H., Namitz, K. E., Cosgrove, M. S., and Loh, S. N. Small Molecule-Induced Domain Swapping as a Mechanism for Controlling Protein Function and Assembly. Scientific Reports 7, 44388, 2017.
Kishima, Y., Yamamoto, H., Izumoto, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Ito, H., Yoshizaki, K., and Nakamura, H. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. Journal of Biological Chemistry 277, 10315-10322, 2002.
Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., and Yee, V. C. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nature Structural Biology 8, 770-774, 2001.
Kung, M. L., Tsai, H. E., Hu, T. H., Kuo, H. M., Liu, L. F., Chen, S. C., Lin, P. R., Ma, Y. L., Wang, E. M., Liu, G. S., Liu, J. K., and Tai, M. H. Hepatoma-derived growth factor stimulates podosome rosettes formation in NIH/3T3 cells through the activation of phosphatidylinositol 3-kinase/Akt pathway. Biochemical and Biophysical Research Communications 425, 169-176, 2012.
Laguri, C., Duband-Goulet, I., Friedrich, N., Axt, M., Belin, P., Callebaut, I., Gilquin, B., Zinn-Justin, S., and Couprie, J. Human mismatch repair protein MSH6 contains a PWWP domain that targets double stranded DNA. Biochemistry 47, 6199-6207, 2008.
Laue, K., Daujat, S., Crump, J. G., Plaster, N., Roehl, H. H., Kimmel, C. B., Schneider, R., and Hammerschmidt, M. The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development 135, 1935, 2008.
Lee, H., Habas, R., and Abate-Shen, C. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304, 1675-1678, 2004.
Lin, Y. W., Li, C. F., Chen, H. Y., Yen, C. Y., Lin, L. C., Huang, C. C., Huang, H. Y., Wu, P. C., Chen, C. H., Chen, S. C., and Tai, M. H. The expression and prognostic significance of hepatoma-derived growth factor in oral cancer. Oral Oncology 48, 629-635, 2012.
Liu, X., Li, Z., Song, Y., Wang, R., Han, L., Wang, Q., Jiang, K., Kang, C., and Zhang, Q. AURKA induces EMT by regulating histone modification through Wnt/beta-catenin and PI3K/Akt signaling pathway in gastric cancer. Oncotarget 7, 33152-33164, 2016.
Liu, Y., and Eisenberg, D. 3D domain swapping: As domains continue to swap. Protein Science 11, 1285-1299, 2002.
Liu, Y., Hart, P. J., Schlunegger, M. P., and Eisenberg, D. The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution. Proceedings of the National Academy of Sciences of the United States of America 95, 3437-3442, 1998.
Llano, M., Saenz, D. T., Meehan, A., Wongthida, P., Peretz, M., Walker, W. H., Teo, W., and Poeschla, E. M. An essential role for LEDGF/p75 in HIV integration. Science 314, 461-464, 2006.
Lukasik, S. M., Cierpicki, T., Borloz, M., Grembecka, J., Everett, A., and Bushweller, J. H. High resolution structure of the HDGF PWWP domain: A potential DNA binding domain. Protein Science 15, 314-323, 2006.
Milburn, M. V., Hassell, A. M., Lambert, M. H., Jordan, S. R., Proudfoot, A. E., Graber, P., and Wells, T. N. A novel dimer configuration revealed by the crystal structure at 2.4 A resolution of human interleukin-5. Nature 363, 172-176, 1993.
Millard, C. S., Stols, L., Quartey, P., Kim, Y., Dementieva, I., and Donnelly, M. I. A less laborious approach to the high-throughput production of recombinant proteins in Escherichia coli using 2-liter plastic bottles. Protein Expression and Purification 29, 311-320, 2003.
Mosevitsky, M. I., Novitskaya, V. A., Iogannsen, M. G., and Zabezhinsky, M. A. Tissue specificity of nucleo-cytoplasmic distribution of HMG1 and HMG2 proteins and their probable functions. European Journal of Biochemistry 185, 303-310, 1989.
Narron, J. V., Stoops, T. D., Barringhaus, K., Matsumura, M., and Everett, A. D. Hepatoma-derived growth factor is expressed after vascular injury in the rat and stimulates smooth muscle cell migration. Pediatric Research 59, 778-783, 2006.
Nishioka, K., Rice, J. C., Sarma, K., Erdjument-Bromage, H., Werner, J., Wang, Y., Chuikov, S., Valenzuela, P., Tempst, P., Steward, R., Lis, J. T., Allis, C. D., and Reinberg, D. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Molecular Cell 9, 1201-1213, 2002.
Olins, D. E., and Olins, A. L. Chromatin history: our view from the bridge. Nature Reviews Molecular Cell Biology 4, 809-814, 2003.
Oliver, J. A., and Al-Awqati, Q. An endothelial growth factor involved in rat renal development. Journal of Clinical Investigation 102, 1208-1219, 1998.
Otwinowski, Z., and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology 276, 307-326, 1997.
Park, C., and Raines, R. T. Dimer formation by a "monomeric" protein. Protein Science 9, 2026-2033, 2000.
Pop, C., Chen, Y. R., Smith, B., Bose, K., Bobay, B., Tripathy, A., Franzen, S., and Clark, A. C. Removal of the pro-domain does not affect the conformation of the procaspase-3 dimer. Biochemistry 40, 14224-14235, 2001.
Qiu, C., Sawada, K., Zhang, X., and Cheng, X. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nature Structural Biology 9, 217-224, 2002.
Robertson, K. D., Uzvolgyi, E., Liang, G., Talmadge, C., Sumegi, J., Gonzales, F. A., and Jones, P. A. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Research 27, 2291-2298, 1999.
Rondelet, G., Dal Maso, T., Willems, L., and Wouters, J. Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. Journal of Structural Biology 194, 357-367, 2016.
Rosano, G. L., and Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology 5, 172, 2014.
Sharp, P. M., Cowe, E., Higgins, D. G., Shields, D. C., Wolfe, K. H., and Wright, F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Research 16, 8207-8211, 1988.
Shun, M. C., Raghavendra, N. K., Vandegraaff, N., Daigle, J. E., Hughes, S., Kellam, P., Cherepanov, P., and Engelman, A. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes and Development 21, 1767-1778, 2007.
Sue, S. C., Chen, J. Y., Lee, S. C., Wu, W. G., and Huang, T. H. Solution structure and heparin interaction of human hepatoma-derived growth factor. Journal of Molecular Biology 343, 1365-1377, 2004.
Sue, S. C., Lee, W. T., Tien, S. C., Lee, S. C., Yu, J. G., Wu, W. J., Wu, W. G., and Huang, T. H. PWWP module of human hepatoma-derived growth factor forms a domain-swapped dimer with much higher affinity for heparin. Journal of Molecular Biology 367, 456-472, 2007.
Tan, X., Rotllant, J., Li, H., De Deyne, P., and Du, S. J. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proceedings of the National Academy of Sciences of the United States of America 103, 2713-2718, 2006.
Thompson, J. D., Higgins, D. G., and Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680, 1994.
Uyama, H., Tomita, Y., Nakamura, H., Nakamori, S., Zhang, B., Hoshida, Y., Enomoto, H., Okuda, Y., Sakon, M., Aozasa, K., Kawase, I., Hayashi, N., and Monden, M. Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clinical Cancer Research 12, 6043-6048, 2006.
Vagin, A., and Teplyakov, A. MOLREP: an Automated Program for Molecular Replacement. Journal of Applied Crystallography 30, 1022-1025, 1997.
Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F., and Murshudov, G. N. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallographica Section D 60, 2184-2195, 2004.
Vasina, J. A., and Baneyx, F. Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expression and Purification 9, 211-218, 1997.
Vera, A., Gonzalez-Montalban, N., Aris, A., and Villaverde, A. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnology and Bioengineering 96, 1101-1106, 2007.
Vezzoli, A., Bonadies, N., Allen, M. D., Freund, S. M., Santiveri, C. M., Kvinlaug, B. T., Huntly, B. J., Gottgens, B., and Bycroft, M. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nature Structural and Molecular Biology 17, 617-619, 2010.
Viadiu, H., and Aggarwal, A. K. Structure of BamHI Bound to Nonspecific DNA: A Model for DNA Sliding. Molecular Cell 5, 889-895, 2000.
Wang, C. H., Davamani, F., Sue, S. C., Lee, S. C., Wu, P. L., Tang, F. M., Shih, C., Huang, T. H., and Wu, W. G. Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochemical Journal 433, 127-138, 2011.
Wang, S., and Fang, W. Increased expression of hepatoma-derived growth factor correlates with poor prognosis in human nasopharyngeal carcinoma. Histopathology 58, 217-224, 2011.
Wanschura, S., Schoenmakers, E. F. P. M., Huysmans, C., Bartnitzke, S., Van de Ven, W. J. M., and Bullerdiek, J. Mapping of the gene encoding the human hepatoma-derived growth factor (HDGF) with homology to the high-mobility group (HMG)-1 protein to Xq25. Genomics 32, 298-300, 1996.
Wu, H., Zeng, H., Lam, R., Tempel, W., Amaya, M. F., Xu, C., Dombrovski, L., Qiu, W., Wang, Y., and Min, J. Structural and histone binding ability characterizations of human PWWP domains. PLoS One 6, e18919, 2011.
Xie, S., Wang, Z., Okano, M., Nogami, M., Li, Y., He, W. W., Okumura, K., and Li, E. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 236, 87-95, 1999.
Xu, G. L., Bestor, T. H., Bourc'his, D., Hsieh, C. L., Tommerup, N., Bugge, M., Hulten, M., Qu, X., Russo, J. J., and Viegas-Pequignot, E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187-191, 1999.
Yang, J., and Everett, A. D. Hepatoma derived growth factor binds DNA through the N-terminal PWWP domain. Biomed Central Genomics Molecular Biology 8, 101-101, 2007.
Yang, J., and Everett, A. D. Hepatoma-derived growth factor represses SET and MYND domain containing 1 gene expression through interaction with C-terminal binding protein. Journal of Molecular Biology 386, 938-950, 2009.