簡易檢索 / 詳目顯示

研究生: 陳俐穎
Chen, Li-Ying
論文名稱: 人類肝癌衍生生長因子的PWWP結構區域交換與SMYD1交互作用在基因調控的關連
Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor for gene regulation
指導教授: 陳俊榮
Chen, Chun-Jung
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 105
中文關鍵詞: 人類肝癌衍生生長因子PWWP 區域SMYD1 啟動子結構區域互換
外文關鍵詞: HDGF, PWWP domain, SMYD1, domain swapping
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類肝癌衍生生長因子(Human hepatoma-derived growth factor)利用其在序列N端具有高度保留性的PWWP區域與染色體結合以及變異性較高的序列C端進行下游基因調控,使之參與不同的細胞過程,如:血管病變,星形膠質細胞增殖以及心血管分化,而過度表現的人類肝癌衍生生長因子與許多種癌症以及心肌不正常發育有著高度的關聯性。本研究希望能探討人類肝癌衍生生長因子與染色體上特殊的啟動子結合前後,其結構上的變化,了解在基因調控方面,人類肝癌衍生生長因子與DNA的交互作用以便未來應用於藥物設計方面。研究中以點突變方式提高了人類衍生生長因子於大腸桿菌表現系統中的表現量,並證明位於序列N端的PWWP區域於DNA與nucleolin的結合扮演重要角色;同時也解析出PWWP區域未與DNA結合以及與SMYD1啟動子結合後的結構。PWWP區域與SMYD1結合後,其結構會由原本單聚體藉由高度擺動性的loop2(hinge loop)形成二聚體並產生結構區域交換現象(3D domain swapping),原來擺動度高的loop2則會變成穩定的α螺旋(αC),並且藉由位於C/N terminus的loop1和4上的Lys19、Gly22、Arg79以及Lys80與10個鹼基對的SMYD1上之小溝(minor groove)結合。本研究解析出第一個PWWP-SMYD1複合體結構並發現與DNA形成複合體後,會造成結構區域交換現象,將其結構與功能性研究結合後,進一步提供人類肝癌衍生生長因子與DNA結合機制的新觀點。

    Domain swapping and SMYD1 interactions
    with the PWWP domain of
    human hepatoma-derived growth factor for gene regulation

    Li-Ying Chen
    Chun-Jung Chen
    Department of Biotechnology and Bioindustry Sciences
    College of Bioscience and Biotechnology

    SUMMARY

    Human Hepatoma-derived growth factor (human HDGF) is highly expressed in the tumour
    cell lines and is related to various cancers. The expression yield of HDGF could be increased
    by rare codon mutation for E. coli, whereas the stability of HDGF and the PWWP domain
    can be optimized by the addition of ligand, protease inhibitor or chelator agent. The apo
    PWWP domain contains four β-strands, two α-helices, a flexible loop2, and the conserved
    PWWP motif locates on the loop1. The HDGF PWWP domain undergoes domain swapping
    to transform its overall conformation from monomeric globular folding into an extended
    dimeric structure upon 10-bp SMYD1 (SET-MYND domain) binding dramatically. The
    flexible loop2 functions as a hinge loop with the partially built structure in the apo PWWP
    domain, refolds into a visible and rigid α-helix in the DNA complex notably. The swapped
    PWWP domain interacts with the minor groove of 10-bp SMYD1 via residues Lys19, Gly22,
    Arg79 and Lys80 with variable characters on loops 1 and 4 at the swapped C/N terminus,
    and the structure becomes more stable and rigid than the apo form. Together with
    physiological assays, these novel structural findings may provide new insights into the
    mechanism of DNA binding and the functional process of HDGF.

    Key words: HDGF, PWWP domain, SMYD1, domain swapping

    INTRODUCTION

    Human HDGF belongs to the HDGF-related protein (HRP) family and is highly expressed
    in the tumour cell lines, developing heart and the normal tissue ubiquitously with angiogenic
    and mitogenic activities (Yang and Everett, 2009). HDGF participates in different cellular
    processes, such as cardiovascular differentiation (Everett, 2002), the formation of vascular
    lesion (Everett et al., 2000) and astrocyte proliferation (Crossin et al., 1997). The over-
    expressed HDGF is related to several kinds of cancers such as hepatocellular carcinoma
    (Chen et al., 2015), non-small cell lung cancer (Iwasaki et al., 2005), etc.

    Human HDGF comprises the chromatin-associated N-terminal PWWP domain which is
    capable of binding the nonspecific DNA, specific SMYD1 promoter and histone (Yang and
    Everett, 2007). Some of the proteins in eukaryotes contain the highly conserved PWWP
    domains from unicellular organisms to human species and most of them belong to
    chromatin-associated proteins (Rondelet et al., 2016). The variable C-terminus of HDGF
    which participates in various cellular processes is in charge of translocation and gene
    regulation. (Kishima et al., 2002; Wang et al., 2011).

    To date, the conserved PWWP domain and complexes with histone-related peptides
    structures have been solved (Qiu et al., 2002; Sue et al., 2004; Vezzoli et al., 2010; Wu et
    al., 2011). However, the interaction between DNA and HDGF remains unclear because of a
    lack of comparatively of essential knowledge about its exact structure in protein-DNA
    complex. In the thesis, we report the first crystal structures of the human HDGF PWWP
    domain with a 10-bp SMYD1 in complex and its unbound apo form. Our studies provide
    new insights into the PWWP-DNA interaction which could facilitate study about the role of
    the PWWP domain in nucleosomal context.

    MATERIALS AND METHODS

    The DNA sequence of HDGF has been mutated on the rare codon from the library of human
    fetal brain cDNA (Stratagene, La Jolla, CA) (Hu et al., 2003). The constructs of HDGF and
    the PWWP domain have constructed into artificial vectors between NdeI and EcoRI
    restriction sites for further production of the recombinant N-terminal His-tagged fusion
    protein.

    The HDGF and the PWWP domain constructs were transformed and over-expressed in
    Escherichia coli (E. coli) BL21 (DE3) and BL21-Codon Plus ® -RIL, respectively.
    Overexpression of HDGF and the PWWP domain were induced with 0.5 mM and 1 mM
    IPTG (isopropyl β-D-thio-galactopyranoside) for overnight at 37 °C, respectively. The His-
    tag fusion proteins were purified from the supernatant after sonication based on Ni 2+ -NTA
    agarose column (GE healthcare). The endogenous DNA from E. coli was then removed from
    the purified proteins were then removed by the anion-exchange chromatography (Hitrap Q)
    owing to the distinct pI values between DNA and proteins. The protein with various lengths
    designed SMYD1 complexes were further collected by size-exclusion chromatography
    (Superdex-200).

    Crystallization trials were performed using several crystal-screening kits with 96-well plates
    (JET Biofil) based on the hanging-drop vapor-diffusion method. The apo PWWP domain
    crystals appeared under the condition containing sodium chloride (0.2 M) and polyethylene
    glycol (PEG) 4000 (25%, w/v) and Tris (0.1 M, pH 8.5). The crystals of PWWP-SMYD1
    complex were obtained in a condition containing sodium phosphate dibasic (0.09 M),
    sodium nitrate (0.09 M), PEG 1000 (12.5%), PEG 4000 (12.5%, w/v) and Tris; Bicine (0.1
    M, pH 8.5).

    The initial phase of the apo PWWP domain has been solved by the HDGF2 PWWP domain
    (PDB entry: 3QBY) with one PWWP domain in asymmetric unit, and the structure was
    refined to 3.3 Å resolution, whereas 10-bp SMYD1 in asymmetric unit was determined at
    2.84 Å . All structures were determined by the molecular replacement method with the
    program, Molrep (Vagin and Teplyakov, 1997).

    RESULTS AND DISCUSSION

    We have improved the expression yield of human HDGF by rare codon mutation for
    structural studies, confirmed that the binding ability of both NCL and DNA for HDGF is
    through its N-terminal PWWP domain and the addition of SMYD1 interferes the binding
    capability of NCL for HDGF, and determined the first crystal structures of human HDGF
    PWWP domain with 10-bp SMYD1 complex and its apo form, respectively.

    The apo PWWP domain reveals a monomeric structure with four β-strands, two α-helices
    and a flexible loop2 with diminished electron density. However, the PWWP domain
    undertakes domain swapping to alter markedly its secondary structures and transform the
    overall conformation through a globular monomer into an extended dimer with newly
    formed αC upon DNA binding. The flexible loop2 in the apo PWWP domain is replaced by
    newly formed αC upon DNA binding in the PWWP-SMYD1 complex and functions as hinge
    loop which participates in domain swapping. (Fig. 1).

    The PWWP domain interacts with the minor groove of DNA through the residues with
    variable characters, Lys19, Gly22, Arg79 and Lys80, at DNA binding loops: 1 and 4 from
    two chains at C/N terminus of the swapped dimer. Together with physiological assays, these
    novel structural findings may provide new insights into the mechanism of DNA binding and
    the functional process of HDGF.

    The part of potential DNA binding residues in the structures monitored from NMR chemical
    shift perturbation (PDB entries: 2B8A, 2M16, 2GFU) are consistent with the DNA-binding
    area in the HDGF PWWP-SMYD1 complex, suggesting that these PWWP domains may
    react to DNA through loops: 1 and 4.

    Figure 1. The density at hinge loop region in the apo PWWP domain and PWWP-
    SMYD1 complex and schematic representation of the dimeric swapped PWWP.
    (A) The incomplete density causes the difficulty of structure trace from Ala36 to Lys44 (blue
    mesh, 2F o -F c at 1.5 σ). (B) The well determined and defined αC structure from Asp31 to
    Lys44 could be covered within the continuous density (blue mesh, 2F o -F c at 1.5 σ). (C) The
    involved swapped region is shown in green and the other regions are in red in one monomer
    (left panel). The other molecule of a dimer is shown in gray (right panel). The DNA-binding
    loops are shown in blue, whereas the residues of the PWWP motif are indicated in stick.

    CONCLUSION

    In this study, we have increased the expression yield of HDGF for structural studies
    successfully, confirmed that the binding capability of both DNA and NCL for HDGF through
    its N-terminal PWWP domain and addition of SMYD1 interferes the binding capability of
    NCL for HDGF, and determined the first crystal structures of human HDGF PWWP domain
    with 10-bp SMYD1 complex and its apo form at 2.84 Å and 3.3 Å resolution, respectively.
    The PWWP domain undertakes domain swapping to alter markedly its overall conformation
    through a globular monomer into an extended dimer upon DNA binding. The PWWP-DNA
    complex is more stable and rigid compared to the apo form. The PWWP domain interacts
    with the minor groove of DNA through the residues with variable characters at DNA binding
    loops: 1 and 4 from two chains at C/N terminus of the swapped dimer. Together with
    physiological assays, these novel structural findings may provide new insights into the
    mechanism of DNA binding and the functional process of HDGF.

    Table of Contents Chinese Abstract(中文摘要) ........................................................................................ I Abstract .............................................................................................................................. II Acknowledgments ............................................................................................................ VI Table of Contents ........................................................................................................... VII Contents of Tables ............................................................................................................. XI Contents of Figures .......................................................................................................... XII Abbreviation List .............................................................................................................. XV Chapter 1 Research Background ..................................................................................... 1 1-1 The relations between HDGF and cancers ........................................................ 1 1-2 Chromatin-related N-terminal PWWP domain.................................................. 1 1-3 DNA binding ability of N-terminal PWWP domain .......................................... 3 1-4 The relations among histone modification, SMYD1 and HDGF ...................... 4 1-5 Mitogenic activity by variable C-terminus of HDGF ........................................ 5 1-6 Current structures and complexes about HDGF PWWP domain ...................... 5 1-7 Research objectives ........................................................................................... 6 Chapter 2 Materials and Methods ................................................................................... 8 2-1 Site-directed mutagenesis of HDGF for rare codon change .............................. 8 2-2 Construction of the HDGF PWWP 1-100 domain ................................................ 8 2-3 Expression and purification of HDGF from E. coli ........................................... 9 2-4 Expression and purification of HDGF PWWP 1-100 domain from E. coli ........ 10 2-5 Stability test of HDGF and the PWWP domain ............................................... 11 2-6 Colony formation assay .................................................................................... 11 2-7 Secondary structure analyses of the apo PWWP domain and HDGF .............. 11 2-8 Purification of the HDGF PWWP-SMYD1 complex ....................................... 12 2-9 Solid-phase binding assay ................................................................................ 12 2-10 Competitive assay ............................................................................................ 13 2-11 Crystallization of HDGF apo PWWP and PWWP-SMYD1 complex ............. 13 2-12 X-ray data collection of HDGF apo PWWP domain and PWWP-SMYD1 complex, structure determination and refinement ........................................... 14 Chapter 3 Results ............................................................................................................ 17 3-1 Low expression yield of HDGF from E. coli .................................................. 17 3-2 Preparation of large amount HDGF and the PWWP domain from E. coli ...... 18 3-3 The stability of HDGF and the PWWP domain .............................................. 19 3-4 Functional assay of HDGF and the PWWP domain by cell assay .................. 20 3-5 Functional assay of HDGF and the PWWP domain by DNA binding assay .. 21 3-6 SMYD1 binding attenuates the interaction of HDGF with NCL ..................... 21 3-7 The flexibility and solubility of HDGF and the PWWP domain .................... 22 3-8 Crystallization of apo HDGF, the PWWP domain, HDGF-SMYD1 and PWWP-SMYD1 complex ................................................................................ 23 3-9 Overall structure of the apo PWWP domain ................................................... 24 3-10 Multiple forms of the HDGF apo PWWP domain .......................................... 25 3-11 Overall structure of the domain-swapped PWWP-SMYD1 complex .............. 25 3-12 Interactions between the PWWP domain and SMYD1 .................................... 28 3-13 Structural and B-factor comparisons of the PWWP-SMYD1 complex and apo form ................................................................................................................. 29 Chapter 4 Discussion ....................................................................................................... 31 4-1 The difficulty of HDGF crystallization ........................................................... 31 4-2 SMYD1 binding attenuates the interaction of HDGF with NCL ..................... 31 4-3 The multiform of the PWWP domain for DNA binding ................................. 32 4-4 Dimerization by domain swapping of the HDGF PWWP domain for DNA binding ............................................................................................................. 35 4-5 Interactions between the PWWP domain and SMYD1 .................................... 38 4-6 Structural comparisons and implications to other PWWP domains ................ 38 4-7 The importance of the positively charged distribution in the complex ........... 41 4-8 Mechanism hypothesis of DNA binding and functional process .................... 41 4-9 The anticipative applications depend on HDGF PWWP-SMYD1 complex structure in the future ...................................................................................... 43 Chapter 5 Conclusion...................................................................................................... 44 References ........................................................................................................................ 46 Tables ................................................................................................................................ 56 Figures .............................................................................................................................. 65 Related Paper Publications .......................................................................................... 104 Contents of Tables Table 1. Summary of primers utilized for the study of HDGF ................................... 57 Table 2. Storage buffer conditions for stability test of HDGF and the PWWP domain ........................................................................................................... 58 Table 3. Crystallographic data and refinement statistics of the HDGF apo PWWP domain and the PWWP-SMYD1 complex ..................................................... 59 Table 4. The numbers of pair interactions correspond to those in the dimerization of the PWWP domain (Fig. 20) ......................................................................... 60 Table 5. Detailed interactions of each DNA-binding residue and the DNA nucleotide ...................................................................................................... 61 Table 6. Normalized B-factor values at the regions of structural differences between the PWWP-SMYD1 complex and the apo PWWP domain ........................... 62 Table 7. The numbers of pair interactions correspond to those in Fig. 27D ............... 63 Table 8. Hydrogen-bonding residue pairs of the swapped domain in the PWWP- SMYD1 complex and the apo PWWP domain .............................................. 64 Contents of Figures Figure 1. The improvement of expression of HDGF ..................................................... 66 Figure 2. Expression results of HDGF under different culture media ........................... 67 Figure 3. The expression results of HDGF after mutation for codon usage strategy ..... 68 Figure 4. NTA purification results of HDGF and the PWWP domain ........................... 69 Figure 5. Removal of the endogenous DNA from E. coli for HDGF and the PWWP domain by ion-exchange chromatography ...................................................... 70 Figure 6. Observation of multiple forms of HDGF and the PWWP domain with the Superdex-200 size-exclusion chromatography ............................................... 71 Figure 7. The stability of HDGF under various conditions ............................................ 72 Figure 8. The stability of HDGF PWWP domain under various conditions.................. 73 Figure 9. The biological activity of human HDGF and the PWWP domain ................. 74 Figure 10. The DNA binding ability of HDGF and the PWWP domain .......................... 75 Figure 11. The NCL-binding ability of HDGF and the PWWP domain .......................... 76 Figure 12. The secondary structures of HDGF and the PWWP domain based on SRCD 77 Figure 13. The crystals of apo PWWP domain and PWWP-SMYD1 complex ............... 78 Figure 14. Overall structure of the HDGF apo PWWP domain ...................................... 79 Figure 15. The symmetry-related apo PWWP domains in the crystals of hexagonal space group P6 4 22 .......................................................................................... 81 Figure 16. Analyses of interactions between the PWWP domain with various SMYD1 lengths by size-exclusion chromatography (Superdex-200) ........................... 82 Figure 17. The initial density map of PWWP-SMYD1 complex...................................... 83 Figure 18. Overall structure of the PWWP-SMYD1 complex .......................................... 84 Figure 19. Schematic representation of the dimeric swapped PWWP structure .............. 85 Figure 20. The interactions between each domain in the dimeric PWWP-SMYD1 complex ........................................................................................................... 86 Figure 21. Interactions in the PWWP-SMYD1 complex .................................................. 87 Figure 22. Distances between loops 1 and 4 in the PWWP-SMYD1 complex ................ 89 Figure 23. Stereo view of the charge distribution from surface in the PWWP-SMYD1 complex ........................................................................................................... 90 Figure 24. Comparisons of B-factors at the large structural differences between the complex and the apo forms ............................................................................. 91 Figure 25. The flexibility of the hinge region between the apo PWWP domain (loop2) and PWWP-SMYD1 complex (αC) based on the electron density map ......... 92 Figure 26. The possibility of non-swapped apo dimeric PWWP domain ........................ 93 Figure 27. Structural comparisons of domain swapping proteins, RNase A, apo PWWP domain and PWWP-SMYD1 complex ............................................................ 94 Figure 28. The structural comparison of the methylated peptides binding region between the PWWP domains of swapped HDGF complex and non-swapped HDGF2............................................................................................................ 96 Figure 29. Structural comparisons of various PWWP domains ....................................... 97 Figure 30. The distance between the swapped HDGF PWWP domains .......................... 99 Figure 31. Sequence alignments and structural comparisons of various PWWP domains ......................................................................................................... 100 Figure 32. Proposed mechanism of HDGF in gene regulation ...................................... 102

    Adrio, J. L., and Demain, A. L. Recombinant organisms for production of industrial products. Bioengineered Bugs 1, 116-131, 2010.
    Angov, E., Legler, P. M., and Mease, R. M. Adjustment of codon usage frequencies by codon harmonization improves protein expression and folding. Methods in Molecular Biology 705, 1-13, 2011.
    Bennett, M. J., Schlunegger, M. P., and Eisenberg, D. 3D domain swapping: a mechanism for oligomer assembly. Protein Science 4, 2455-2468, 1995.
    Burgess-Brown, N. A., Sharma, S., Sobott, F., Loenarz, C., Oppermann, U., and Gileadi, O. Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expression and Purification 59, 94-102, 2008.
    Chen, L. Y., Huang, Y. C., Huang, S. T., Hsieh, Y. C., Guan, H. H., Chen, N. C., Chuankhayan, P., Yoshimura, M., Tai, M. H., and Chen, C. J. Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor. Scientific Reports 8, 287, 2018.
    Chen, S. C., Hu, T. H., Huang, C. C., Kung, M. L., Chu, T. H., Yi, L. N., Huang, S. T., Chan, H. H., Chuang, J. H., Liu, L. F., Wu, H. C., Wu, D. C., Chang, M. C., and Tai, M. H. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget 6, 16253-16270, 2015.
    Chen, V. B., Arendall, W. B., III, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D 66, 12-21, 2010.
    Chen, X., Yun, J., Fei, F., Yi, J., Tian, R., Li, S., and Gan, X. Prognostic value of nuclear hepatoma-derived growth factor (HDGF) localization in patients with breast cancer. Pathology - Research and Practice 208, 437-443, 2012.
    Cherepanov, P., Maertens, G., Proost, P., Devreese, B., Van Beeumen, J., Engelborghs, Y., De Clercq, E., and Debyser, Z. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. Journal of Biological Chemistry 278, 372-381, 2003.
    Choe, W. S., and Middelberg, A. P. Selective precipitation of DNA by spermine during the chemical extraction of insoluble cytoplasmic protein. Biotechnology Progress 17, 1107-1113, 2001.
    Ciuffi, A., Llano, M., Poeschla, E., Hoffmann, C., Leipzig, J., Shinn, P., Ecker, J. R., and Bushman, F. A role for LEDGF/p75 in targeting HIV DNA integration. Nature Medicine 11, 1287-1289, 2005.
    Crossin, K. L., Tai, M. H., Krushel, L. A., Mauro, V. P., and Edelman, G. M. Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proceedings of the National Academy of Sciences of the United States of America 94, 2687-2692, 1997.
    del Solar, G., and Espinosa, M. Plasmid copy number control: an ever-growing story. Molecular Microbiology 37, 492-500, 2000.
    Demain, A. L., and Vaishnav, P. Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances 27, 297-306, 2009.
    Di Donato, A., Cafaro, V., Romeo, I., and D'Alessio, G. Hints on the evolutionary design of a dimeric RNase with special bioactions. Protein Science 4, 1470-1477, 1995.
    Diederichs, K., Jacques, S., Boone, T., and Karplus, P. A. Low-resolution structure of recombinant human granulocyte-macrophage colony stimulating factor. Journal of Molecular Biology 221, 55-60, 1991.
    Dietz, F., Franken, S., Yoshida, K., Nakamura, H., Kappler, J., and Gieselmann, V. The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochemical Journal 366, 491-500, 2002.
    Eidahl, J. O., Crowe, B. L., North, J. A., McKee, C. J., Shkriabai, N., Feng, L., Plumb, M., Graham, R. L., Gorelick, R. J., Hess, S., Poirier, M. G., Foster, M. P., and Kvaratskhelia, M. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Research 41, 3924-3936, 2013.
    Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. Features and development of Coot. Acta Crystallographica Section D 66, 486-501, 2010.
    Enomoto, H., Yoshida, K., Kishima, Y., Okuda, Y., and Nakamura, H. Participation of hepatoma-derived growth factor in the regulation of fetal hepatocyte proliferation. Journal of Gastroenterology 37 Suppl 14, 158-161, 2002.
    Everett, A. D. Identification, cloning, and developmental expression of hepatoma-derived growth factor in the developing rat heart. Developmental Dynamics 222, 450-458, 2001.
    Everett, A. D., Lobe, D. R., Matsumura, M. E., Nakamura, H., and McNamara, C. A. Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. Journal of Clinical Investigation 105, 567-575, 2000.
    Everett, A. D., Narron, J. V., Stoops, T., Nakamura, H., and Tucker, A. Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. American Journal of Physiology-Lung Cellular and Molecular Physiology 286, L1194-L1201, 2004.
    Everett, A. D., Stoops, T., and McNamara, C. A. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. Journal of Biological Chemistry 276, 37564-37568, 2001.
    Fernandez-Castane, A., Vine, C. E., Caminal, G., and Lopez-Santin, J. Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures. Journal of Biotechnology 157, 391-398, 2012.
    Goodman, D. B., Church, G. M., and Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475-479, 2013.
    Gottlieb, P. D., Pierce, S. A., Sims, R. J., Yamagishi, H., Weihe, E. K., Harriss, J. V., Maika, S. D., Kuziel, W. A., King, H. L., Olson, E. N., Nakagawa, O., and Srivastava, D. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nature Genetics 31, 25-32, 2002.
    Gustafsson, C., Govindarajan, S., and Minshull, J. Codon bias and heterologous protein expression. Trends in Biotechnology 22, 346-353, 2004.
    Holcomb, J., Spellmon, N., Zhang, Y., Doughan, M., Li, C., and Yang, Z. Protein crystallization: Eluding the bottleneck of X-ray crystallography. Aims Press Biophysics 4, 557-575, 2017.
    Horibata, S., Vo, T. V., Subramanian, V., Thompson, P. R., and Coonrod, S. A. Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells. Journal of Visualized Experiments : JoVE, 52727, 2015.
    Hu, T. H., Huang, C. C., Liu, L. F., Lin, P. R., Liu, S. Y., Chang, H. W., Changchien, C. S., Lee, C. M., Chuang, J. H., and Tai, M. H. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98, 1444-1456, 2003.
    Iwasaki, T., Nakagawa, K., Nakamura, H., Takada, Y., Matsui, K., and Kawahara, K. Hepatoma-derived growth factor as a prognostic marker in completely resected non-small-cell lung cancer. Oncology Reports 13, 1075-1080, 2005.
    Karchin, J. M., Ha, J. H., Namitz, K. E., Cosgrove, M. S., and Loh, S. N. Small Molecule-Induced Domain Swapping as a Mechanism for Controlling Protein Function and Assembly. Scientific Reports 7, 44388, 2017.
    Kishima, Y., Yamamoto, H., Izumoto, Y., Yoshida, K., Enomoto, H., Yamamoto, M., Kuroda, T., Ito, H., Yoshizaki, K., and Nakamura, H. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. Journal of Biological Chemistry 277, 10315-10322, 2002.
    Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., and Yee, V. C. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nature Structural Biology 8, 770-774, 2001.
    Kung, M. L., Tsai, H. E., Hu, T. H., Kuo, H. M., Liu, L. F., Chen, S. C., Lin, P. R., Ma, Y. L., Wang, E. M., Liu, G. S., Liu, J. K., and Tai, M. H. Hepatoma-derived growth factor stimulates podosome rosettes formation in NIH/3T3 cells through the activation of phosphatidylinositol 3-kinase/Akt pathway. Biochemical and Biophysical Research Communications 425, 169-176, 2012.
    Laguri, C., Duband-Goulet, I., Friedrich, N., Axt, M., Belin, P., Callebaut, I., Gilquin, B., Zinn-Justin, S., and Couprie, J. Human mismatch repair protein MSH6 contains a PWWP domain that targets double stranded DNA. Biochemistry 47, 6199-6207, 2008.
    Laue, K., Daujat, S., Crump, J. G., Plaster, N., Roehl, H. H., Kimmel, C. B., Schneider, R., and Hammerschmidt, M. The multidomain protein Brpf1 binds histones and is required for Hox gene expression and segmental identity. Development 135, 1935, 2008.
    Lee, H., Habas, R., and Abate-Shen, C. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304, 1675-1678, 2004.
    Lin, Y. W., Li, C. F., Chen, H. Y., Yen, C. Y., Lin, L. C., Huang, C. C., Huang, H. Y., Wu, P. C., Chen, C. H., Chen, S. C., and Tai, M. H. The expression and prognostic significance of hepatoma-derived growth factor in oral cancer. Oral Oncology 48, 629-635, 2012.
    Liu, X., Li, Z., Song, Y., Wang, R., Han, L., Wang, Q., Jiang, K., Kang, C., and Zhang, Q. AURKA induces EMT by regulating histone modification through Wnt/beta-catenin and PI3K/Akt signaling pathway in gastric cancer. Oncotarget 7, 33152-33164, 2016.
    Liu, Y., and Eisenberg, D. 3D domain swapping: As domains continue to swap. Protein Science 11, 1285-1299, 2002.
    Liu, Y., Hart, P. J., Schlunegger, M. P., and Eisenberg, D. The crystal structure of a 3D domain-swapped dimer of RNase A at a 2.1-A resolution. Proceedings of the National Academy of Sciences of the United States of America 95, 3437-3442, 1998.
    Llano, M., Saenz, D. T., Meehan, A., Wongthida, P., Peretz, M., Walker, W. H., Teo, W., and Poeschla, E. M. An essential role for LEDGF/p75 in HIV integration. Science 314, 461-464, 2006.
    Lukasik, S. M., Cierpicki, T., Borloz, M., Grembecka, J., Everett, A., and Bushweller, J. H. High resolution structure of the HDGF PWWP domain: A potential DNA binding domain. Protein Science 15, 314-323, 2006.
    Milburn, M. V., Hassell, A. M., Lambert, M. H., Jordan, S. R., Proudfoot, A. E., Graber, P., and Wells, T. N. A novel dimer configuration revealed by the crystal structure at 2.4 A resolution of human interleukin-5. Nature 363, 172-176, 1993.
    Millard, C. S., Stols, L., Quartey, P., Kim, Y., Dementieva, I., and Donnelly, M. I. A less laborious approach to the high-throughput production of recombinant proteins in Escherichia coli using 2-liter plastic bottles. Protein Expression and Purification 29, 311-320, 2003.
    Mosevitsky, M. I., Novitskaya, V. A., Iogannsen, M. G., and Zabezhinsky, M. A. Tissue specificity of nucleo-cytoplasmic distribution of HMG1 and HMG2 proteins and their probable functions. European Journal of Biochemistry 185, 303-310, 1989.
    Narron, J. V., Stoops, T. D., Barringhaus, K., Matsumura, M., and Everett, A. D. Hepatoma-derived growth factor is expressed after vascular injury in the rat and stimulates smooth muscle cell migration. Pediatric Research 59, 778-783, 2006.
    Nishioka, K., Rice, J. C., Sarma, K., Erdjument-Bromage, H., Werner, J., Wang, Y., Chuikov, S., Valenzuela, P., Tempst, P., Steward, R., Lis, J. T., Allis, C. D., and Reinberg, D. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Molecular Cell 9, 1201-1213, 2002.
    Olins, D. E., and Olins, A. L. Chromatin history: our view from the bridge. Nature Reviews Molecular Cell Biology 4, 809-814, 2003.
    Oliver, J. A., and Al-Awqati, Q. An endothelial growth factor involved in rat renal development. Journal of Clinical Investigation 102, 1208-1219, 1998.
    Otwinowski, Z., and Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology 276, 307-326, 1997.
    Park, C., and Raines, R. T. Dimer formation by a "monomeric" protein. Protein Science 9, 2026-2033, 2000.
    Pop, C., Chen, Y. R., Smith, B., Bose, K., Bobay, B., Tripathy, A., Franzen, S., and Clark, A. C. Removal of the pro-domain does not affect the conformation of the procaspase-3 dimer. Biochemistry 40, 14224-14235, 2001.
    Qiu, C., Sawada, K., Zhang, X., and Cheng, X. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nature Structural Biology 9, 217-224, 2002.
    Robertson, K. D., Uzvolgyi, E., Liang, G., Talmadge, C., Sumegi, J., Gonzales, F. A., and Jones, P. A. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Research 27, 2291-2298, 1999.
    Rondelet, G., Dal Maso, T., Willems, L., and Wouters, J. Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. Journal of Structural Biology 194, 357-367, 2016.
    Rosano, G. L., and Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology 5, 172, 2014.
    Sharp, P. M., Cowe, E., Higgins, D. G., Shields, D. C., Wolfe, K. H., and Wright, F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Research 16, 8207-8211, 1988.
    Shun, M. C., Raghavendra, N. K., Vandegraaff, N., Daigle, J. E., Hughes, S., Kellam, P., Cherepanov, P., and Engelman, A. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes and Development 21, 1767-1778, 2007.
    Sue, S. C., Chen, J. Y., Lee, S. C., Wu, W. G., and Huang, T. H. Solution structure and heparin interaction of human hepatoma-derived growth factor. Journal of Molecular Biology 343, 1365-1377, 2004.
    Sue, S. C., Lee, W. T., Tien, S. C., Lee, S. C., Yu, J. G., Wu, W. J., Wu, W. G., and Huang, T. H. PWWP module of human hepatoma-derived growth factor forms a domain-swapped dimer with much higher affinity for heparin. Journal of Molecular Biology 367, 456-472, 2007.
    Tan, X., Rotllant, J., Li, H., De Deyne, P., and Du, S. J. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proceedings of the National Academy of Sciences of the United States of America 103, 2713-2718, 2006.
    Thompson, J. D., Higgins, D. G., and Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673-4680, 1994.
    Uyama, H., Tomita, Y., Nakamura, H., Nakamori, S., Zhang, B., Hoshida, Y., Enomoto, H., Okuda, Y., Sakon, M., Aozasa, K., Kawase, I., Hayashi, N., and Monden, M. Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clinical Cancer Research 12, 6043-6048, 2006.
    Vagin, A., and Teplyakov, A. MOLREP: an Automated Program for Molecular Replacement. Journal of Applied Crystallography 30, 1022-1025, 1997.
    Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F., and Murshudov, G. N. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallographica Section D 60, 2184-2195, 2004.
    Vasina, J. A., and Baneyx, F. Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expression and Purification 9, 211-218, 1997.
    Vera, A., Gonzalez-Montalban, N., Aris, A., and Villaverde, A. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnology and Bioengineering 96, 1101-1106, 2007.
    Vezzoli, A., Bonadies, N., Allen, M. D., Freund, S. M., Santiveri, C. M., Kvinlaug, B. T., Huntly, B. J., Gottgens, B., and Bycroft, M. Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nature Structural and Molecular Biology 17, 617-619, 2010.
    Viadiu, H., and Aggarwal, A. K. Structure of BamHI Bound to Nonspecific DNA: A Model for DNA Sliding. Molecular Cell 5, 889-895, 2000.
    Wang, C. H., Davamani, F., Sue, S. C., Lee, S. C., Wu, P. L., Tang, F. M., Shih, C., Huang, T. H., and Wu, W. G. Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochemical Journal 433, 127-138, 2011.
    Wang, S., and Fang, W. Increased expression of hepatoma-derived growth factor correlates with poor prognosis in human nasopharyngeal carcinoma. Histopathology 58, 217-224, 2011.
    Wanschura, S., Schoenmakers, E. F. P. M., Huysmans, C., Bartnitzke, S., Van de Ven, W. J. M., and Bullerdiek, J. Mapping of the gene encoding the human hepatoma-derived growth factor (HDGF) with homology to the high-mobility group (HMG)-1 protein to Xq25. Genomics 32, 298-300, 1996.
    Wu, H., Zeng, H., Lam, R., Tempel, W., Amaya, M. F., Xu, C., Dombrovski, L., Qiu, W., Wang, Y., and Min, J. Structural and histone binding ability characterizations of human PWWP domains. PLoS One 6, e18919, 2011.
    Xie, S., Wang, Z., Okano, M., Nogami, M., Li, Y., He, W. W., Okumura, K., and Li, E. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 236, 87-95, 1999.
    Xu, G. L., Bestor, T. H., Bourc'his, D., Hsieh, C. L., Tommerup, N., Bugge, M., Hulten, M., Qu, X., Russo, J. J., and Viegas-Pequignot, E. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187-191, 1999.
    Yang, J., and Everett, A. D. Hepatoma derived growth factor binds DNA through the N-terminal PWWP domain. Biomed Central Genomics Molecular Biology 8, 101-101, 2007.
    Yang, J., and Everett, A. D. Hepatoma-derived growth factor represses SET and MYND domain containing 1 gene expression through interaction with C-terminal binding protein. Journal of Molecular Biology 386, 938-950, 2009.

    下載圖示 校內:2023-01-30公開
    校外:2023-01-30公開
    QR CODE