簡易檢索 / 詳目顯示

研究生: 施宏達
Shin, Hung-Ta
論文名稱: 使用擴散小波神經網路學習短期時間序列資料 -以晶圓級封裝之試產問題為例
Using Diffusion Wavelet Neural Network for Learning Short-Term Time Series Data: A Case Study of the Pilot Run Data in Wafer Level Chip Scale Package Process
指導教授: 利德江
Li, Der-Chiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 55
中文關鍵詞: 短期時間序列資料虛擬樣本小波轉換倒傳遞類神經網路灰預測
外文關鍵詞: short-term time series data, virtual samples, wavelet transform, back-propagation neural network, grey prediction
相關次數: 點閱:116下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶圓級晶片封裝的過程中,具有高效能、高功率與高密度等優點,它可以確保印刷電路板一致性裝配有必要實現高產量和高可靠性。由於電子產品輕、薄、短、小的便攜式趨勢,WLCSP已成為未來發展重點。雖此封裝技術使電子訊號輸入/輸出密度得以提升,然而初期導入階段之良率偏低,而影響封裝過程之因素良多,是以多層金屬薄膜上之錫球高度具有決定性之影響。由於新產品開發初期之試製產品樣本稀少,於統計製程管制圖中能提供予之資訊有限,故本研究基於時間分割的概念,應用由Li等人於2011年所提出的相依虛擬樣本產生法,於各分割時間軸產生對應之虛擬樣本,藉以改善小波神經網路(WNN)對短期時間序列資料的預測績效,並稱之為擴散小波神經網路(DWNN)。DWNN確實能有效比灰預測GM(1,1)與倒傳遞類神經網路更為精準。

    The process of wafer level chip scale package (WLCSP) has advantages of high efficiency, high power and high density and it ensures consistent printed circuit board assembly necessary to achieve high yield and reliability. Due to the tendency of electronic appliances is with the light, thin, short, and small portable trend, WLCSP becomes the focus of future development. Though the package technology enhances electronic signal input/output density, low yield often appears in the early stage of introduction. Quite a few manufacturing factors influence the package process, and the height of solder ball on multilayer metallic film is the decisive one. Due to the sparse samples of pilot run in the early stage of new product development, the information that statistical process control charts provide is limited. This study is on the basis of timeline division and proposes the diffusion wavelet neural network which uses correlated virtual sample generating method proposed by Li et al. (2011) to improve the predictive performance of wavelet neural network for short-term time series. The diffusion wavelet neural network could more effectively improve the predictive accuracy than that of back-propagation neural network and grey-based forecasting method.

    目錄 摘要..................................................................... I Abstract...............................................................II 誌謝 ......................................................................III 目錄..................................................................... IV 圖目錄.................................................................. VII 表目錄.................................................................. IX 第一章 緒論...........................................................1 1.1 研究背景........................................................ 1 1.1.1 個案描述...................................................... 1 1.1.2 小樣本學習問題............................................ 4 1.2 研究動機........................................................ 6 1.3 研究目的........................................................ 7 1.4 研究範圍與限制.............................................. 7 1.5 研究流程........................................................ 8 第二章 文獻探討.................................................... 10 2.1 虛擬樣本產生法............................................... 10 2.1.1 資訊擴展...................................................... 11 2.1.2 其他虛擬樣本產生方法................................... 14 2.2 小波神經網路.................................................. 17 2.2.1 小波轉換...................................................... 18 2.2.2 多重尺度分析................................................19 2.2.3 小波函數與尺度函數之關係............................ 21 2.2.4 Daubechies的尺度函數與小波函數................ 22 2.3 倒傳遞類神經網路........................................... 23 2.4 灰預測理論..................................................... 25 第三章 研究方法.................................................... 28 3.1 時間分割........................................................ 28 3.2 相依虛擬樣本產生法........................................ 30 3.2.1 範圍推估..................................................... 31 3.2.2 補值機制..................................................... 34 第四章 實例驗證.................................................... 36 4.1 實驗環境........................................................ 36 4.1.1 實驗資料..................................................... 36 4.1.2 實驗方式..................................................... 37 4.1.3 建模軟體..................................................... 38 4.1.4 預測誤差評估指標 .........................................38 4.2 實驗結果........................................................ 39 4.2.1 預測準確度比較............................................ 39 4.2.2 結果說明...................................................... 44 第五章 結論與建議................................................. 47 5.1 結論............................................................... 47 5.2 未來研究建議.................................................. 48 參考文獻.............................................................. 49 圖目錄 圖1-1 封裝方式(a)傳統封裝;(b)晶圓級封裝............................................... 2 圖1-2 晶圓級封裝製程以及錫球高度示意圖..................................................4 圖1-3 本研究流程圖................................................................................. 9 圖2-1 小樣本資料結構的資訊間隙 ..............................................................10 圖2-2 小波分解樹.................................................................................... 23 圖2-3 類神經網路架構圖.......................................................................... 24 圖3-1 本研究之新訓練樣本建構過程.......................................................... 28 圖3-2 非等間距時間序列資料示意圖.......................................................... 29 圖3-3 相依虛擬樣本之值域推估示意圖 (Li, Chen, Chen, et al., 2011).......... 30 圖3-4 外圍值域計算之示意圖................................................................... 31 圖3-5 當擴散水準 由0.99降低至0.5時之[LIF, UIF](Li, Chen, Chen, et al., 2011) ..............................................................................................................32 圖3-6 最終可能值域推估示意圖................................................................. 33 圖3-7 相關性為無關時的模糊化求解圖示.................................................... 33 圖3-8 以UB、 、以及LB建構模糊三角隸屬函數........................................... 34 圖3-9 可能性評估機制之運作方式 ..............................................................35 圖4-1 改良式擴散小波類神經網路驗證結果比較圖....................................... 36 圖4-2 原始實驗資料(30筆)小波(db 4, Level 4)之Superimpose圖................ 45 圖4-3 加入虛擬樣本之實驗資料(59筆)小波(db 4, Level 4)之Superimpose圖. 45 圖4-4 原始資料(30筆)............................................................................. 46 圖4-5 本研究敏感度分析之9組實驗資料趨勢圖........................................... 46 表目錄 表2-1 一筆時間相依之時間序列資料範例.................................................... 16 表2-2 時間相依資料所組成之訓練與測試資料集........................................... 17 表4-1 新裝機試產前三十筆資料................................................................. 37 表4-2 一筆時間相依之時間序列資料範例.................................................... 38 表4-3 時間相依資料所組成之訓練與測試資料集........................................... 38 表4-4 灰預測GM(1,1)與BPN、WNN之預測值與誤差.................................... 40 表4-5 DWNN當K=1時於三種擴散係數之預測值與誤差................................ 41 表4-6 DWNN當K=3時於三種擴散係數之預測值與誤差................................ 42 表4-7 DWNN當K=4時於三種擴散係數之預測值與誤差................................ 43 表 4-8 DWNN 與GM(1,1)、BPN及WNN之MAPE彙整表................................ 43

    Amina, M., Kodogiannis, V. S., Petrounias, I. P., Lygouras, J. N., & Nychas, G.-J. E. (2012). Identification of the Listeria monocytogenes survival curves in UHT whole milk utilising local linear wavelet neural networks. Expert Systems with Applications, 39(1), 1435-1450.
    Chan, K. Y., Kwong, C. K., & Tsim, Y. C. (2010). A genetic programming based fuzzy regression approach to modelling manufacturing processes. International Journal of Production Research, 48(7), 1967-1982.
    Chen, C. H. (2011). Intelligent transportation control system design using wavelet neural network and PID-type learning algorithms. Expert Systems with Applications, 38(6), 6926-6939.
    Daubechies, I. (1988), Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 41, 909–996.
    Daubechies, I. (1992), Ten lectures on wavelets, SIAM, Philadelphia.
    Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap: New York: Chapmen & Hall.
    Garkani-Nejad, Z., & Rashidi-Nodeh, H. (2010). Comparison of conventional artificial neural network and wavelet neural network in modeling the half-wave potential of aldehydes and ketones. Electrochimica Acta, 55(8), 2597-2605.
    Grossmann, A. & J. Morlet (1984). Decomposition of hardy function into square integrable wavelets of constant shape. SIAM J. Math. Phys., Vol. 15, pp.723-736.
    Guo, G. D., & Dyer, C. R. (2005). Learning from examples in the small sample case: Face expression recognition. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 35(3), 477-488.
    Hong, T. P., Tseng, L. H., & Chien, B. C. (2010). Mining from incomplete quantitative data by fuzzy rough sets. Expert Systems with Applications, 37(3), 2644-2653.
    Huang, C. F. (1997). Principle of information. Fuzzy Sets and Systems, 91(1), 69-90.
    Huang, C. F., & Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35(2), 137-161.
    Huang, C. J., Wang, H. F., Chiu, H. J., Lan, T. H., Hu, T. M., & Loh, E. W. (2010). Prediction of the Period of Psychotic Episode in Individual Schizophrenics by Simulation-Data Construction Approach. Journal of Medical Systems, 34(5), 799-808.
    Ivănescu, V.C., Bertrand, J.W.M., Fransoo, J.C., Kleijnen, J.P.C., 2006. Bootstrapping to solve the limited data problem in production control: an application in batch process industries. Journal of the Operational Research Society, 57, 2-9.
    Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685.
    Jennrich, R. I., & Schluchter, M. D. (1986). UNBALANCED REPEATED-MEASURES MODELS WITH STRUCTURED COVARIANCE MATRICES. Biometrics, 42(4), 805-820.
    Kuo, Y., Yang, T., Peters, B. A., & Chang, I. (2007). Simulation metamodel development using uniform design and neural networks for automated material handling systems in semiconductor wafer fabrication. Simulation Modelling Practice and Theory, 15(8), 1002-1015.
    Laird, N. M., & Ware, J. H. (1982). RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA. Biometrics, 38(4), 963-974.
    Lanouette, R., Thibault, J., & Valade, J. L. (1999). Process modeling with neural networks using small experimental datasets. Computers & Chemical Engineering, 23(9), 1167-1176.
    Li, D., Gu, H., & Zhang, L. Y. (2010). A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data. Expert Systems with Applications, 37(10), 6942-6947.
    Li, D. C., Chang, C. J., Chen, C. C., & Chen, C. S. (2010). Using Non-equigap Grey Model for Small Data Set Forecasting - A Color Filter Manufacturing Example. Journal of Grey System, 22(4), 375-382.
    Li, D. C., Chen, C. C., Chang, C. J., & Chen, W. C. (2011). Employing Box-and-Whisker plots for learning more knowledge in TFT-LCD pilot runs. International Journal of Production Research.
    Li, D. C., Chen, C. C., Chang, C. J., & Lin, W. K. (2012). A Tree-based-Trend-Diffusion prediction procedure for small sample sets in the early stages of manufacturing systems. Expert Systems with Applications, 39(1), 1575-1581.
    Li, D. C., Chen, C. C., Chen, W. C., & Chang, C. J. (2011). Employing dependent virtual samples to obtain more manufacturing information in pilot runs. International Journal of Production Research.
    Li, D. C., Chen, L. S., & Lin, Y. S. (2003). Using Functional Virtual Population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024.
    Li, D. C., Fang, Y. H., Lai, Y. Y., & Hu, S. C. (2009). Utilization of virtual samples to facilitate cancer identification for DNA microarray data in the early stages of an investigation. Information Sciences, 179(16), 2740-2753.
    Li, D. C., Hsu, H. C., Tsai, T. I., Lu, T. J., & Hu, S. C. (2007). A new method to help diagnose cancers for small sample size. Expert Systems with Applications, 33(2), 420-424.
    Li, D. C., & Lin, Y. S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175(1), 413-434.
    Li, D. C., Liu, C. W., Fang, Y. H., & Chen, C. C. (2010). A yield forecast model for pilot products using support vector regression and manufacturing experience-the case of large-size polariser. International Journal of Production Research, 48(18), 5481-5496.
    Li, D. C., Liu, C. W., & Hu, S. C. (2010). A learning method for the class imbalance problem with medical data sets. Computers in Biology and Medicine, 40(5), 509-518.
    Li, D. C., Tsai, T. I., & Shi, S. (2009). A prediction of the dielectric constant of multi-layer ceramic capacitors using the mega-trend-diffusion technique in powder pilot runs: case study. International Journal of Production Research, 47(1), 51-69.
    Li, D. C., Wu, C. S., & Chang, F. M. M. (2005). Using data-fuzzification technology in small data set learning to improve FMS scheduling accuracy. International Journal of Advanced Manufacturing Technology, 27(3-4), 321-328.
    Li, D. C., Wu, C. S., Tsai, T. I., & Chang, F. M. M. (2006). Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge. Computers & Operations Research, 33(6), 1857-1869.
    Li, D. C., Wu, C. S., Tsai, T. I., & Lina, Y. S. (2007). Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Computers & Operations Research, 34(4), 966-982.
    Li, D. C., & Yeh, C. W. (2008). A non-parametric learning algorithm for small manufacturing data sets. Expert Systems with Applications, 34(1), 391-398.
    Li, D. C., Yeh, C. W., & Li, Z. Y. (2008). A case study: The prediction of Taiwan's export of polyester fiber using small-data-set learning methods. Expert Systems with Applications, 34(3), 1983-1994.
    Lin, Y. S., & Li, D. C. (2010). The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems. European Journal of Operational Research, 207(1), 121-130.
    Mallat S. (1988). Multiresolution Representation and Wavelets. Ph.D. Dissertation, University of Philadelphia, Philadelphia.
    Mallat S. (1989). A Theory of Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 674-693.
    Meyer, Yves (1993), “Wavelets - Algorithms and applications”, Wavelets - Algorithms and applications Society for Industrial and Applied Mathematics Translation., pp.142.
    Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 86(11), 2196-2209.
    Oniśko, A., Druzdzel, M. J., & Wasyluk, H. (2001). Learning Bayesian network parameters from small data sets: application of Noisy-OR gates. [Proceedings Paper]. International Journal of Approximate Reasoning, 27(2), 165-182.
    Papari, M. M., Yousefi, F., Moghadasi, J., Karimi, H., & Campo, A. (2011). Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. International Journal of Thermal Sciences, 50(1), 44-52.
    Rao, R. M. and Bopardikar A. S. (1998), Wavelet transform: introduction to theory and applications, Addison Wesley Longman, Inc.
    Thomas, M., Kanstein, A., & Goser, K. (1997). Rare fault detection by possibilistic reasoning Computational Intelligence Theory and Applications. In B. Reusch (Ed.), (Vol. 1226, pp. 294-298): Springer Berlin / Heidelberg.
    Tsai, T. I., & Li, D. C. (2008). Approximate modeling for high order non.-linear functions using small sample sets. Expert Systems with Applications, 34(1), 564-569.
    Tukey, J. W. (1977). Exploratory data analysis: Reading (MA): Addison-Wesley.
    Wang, H. F., & Huang, C. J. (2009). Data construction method for the analysis of the spatial distribution of disastrous earthquakes in Taiwan. International Transactions in Operational Research, 16(2), 189-212.
    Wang, Y., Song, Q. B., MacDonell, S., Shepperd, M., & Shen, J. Y. (2009). Integrate the GM(1,1) and Verhulst Models to Predict Software Stage Effort. Ieee Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 39(6), 647-658.
    Wang, Y., & Witten, I. (1997). Inducing Model Trees for Continuous Classes. Paper presented at the Proceedings of the Poster Papers of the European Conference on Machine Learning, Prague, Czech Republic.
    Wang, Y. F. (2003). On-demand forecasting of stock prices using a real-time predictor. IEEE Transactions on Knowledge and Data Engineering, 15(4), 1033-1037.
    Wolpert, D. H. (1992). STACKED GENERALIZATION. Neural Networks, 5(2), 241-259.
    Xiao, X. P., & Li, F. Q. (2009). Research on the stability of non-equigap grey control model under multiple transformations. Kybernetes, 38(10), 1701-1708.

    下載圖示 校內:2017-07-20公開
    校外:2017-07-20公開
    QR CODE