簡易檢索 / 詳目顯示

研究生: 劉致佑
Liu, Chih-Yu
論文名稱: 結合金奈米粒子與抗菌肽於光熱殺菌治療與細菌檢測
Combining Gold Nanoparticles and Antimicrobial Peptides for Photothermal Antibacterial Therapy and Bacterial Detection
指導教授: 邱文泰
Chiu, Wen-Tai
共同指導教授: 陳奕帆
Chen, Yih-Fan
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 49
中文關鍵詞: 金奈米粒子光熱療法抗菌肽
外文關鍵詞: gold nanoparticles, photothermal therapy, antimicrobial peptides
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以抗菌肽修飾的金奈米粒子用於光熱殺菌的效果。細菌感染的案例在生活中常常看見,例如:皮膚發炎、傷口化膿、糖尿病足等,因此人類對於要怎麼抵抗這些肉眼看不見的微生物是一大挑戰,然而近期抗生素濫用,造成細菌產生了抗藥性,使得抗生素或是其他藥物的治療效果漸漸降低,因此我們使用金奈米粒子作為光能轉換熱能的媒介,並利用接在金奈米粒子表面的抗菌肽增強殺菌效果。抗菌肽除了本身具有殺菌效果,因為它本身的靜電荷,可以主動的附著於細菌表面,並且標記於細胞膜上,整齊排列後產生一個洞口,接在金奈米粒子表面的抗菌肽能使金奈米粒子更容易附著於細菌表面,甚至進入細菌裡使光熱殺菌更有效率,來達到一個使用光與熱的物理性治療。當我們抗菌肽金奈米粒子與細菌反應後,經過雷射光照射,拿去作螢光檢測以及細菌培養來觀察殺菌實驗的效果,並且我們也發展了一套統計方法來證實我們的光熱殺菌是有效且可廣泛使用。由於抗菌肽與細菌間的結合為半專一性,可與多種細菌反映,加上光熱殺菌不受抗藥性的影響,本研究所開發的殺菌技術可望能成有效且廣效性的殺菌治療方式,並且將這種技術更進一步發展成一套細菌檢測系統。

    In this study we investigate the efficacy of photothermal therapy (PTT) using antimicrobial peptide-conjugated gold nanoparticles (AMP-AuNPs). In our live, the cases of bacterial infections are often seen, such as skin inflammation, wound fester, diabetic foot, etc. For humans, how to resist these invisible microbes is being a great challenge. However, the bacteria induce resistance because abuse of the antibiotic in recent years, the efficacy of antibiotic or some antimicrobial drugs are reduced gradually. We use AuNPs to convert light into heat, and we use AMPs to enhance the antibacterial effect. AMPs have antibacterial activity because their own electrostatic charge can random insert into the membrane. Next, the AMPs slightly align hydrophobic sequences and remove the membrane sections and form some pores. AMPs can promote the binding between AuNPs and bacteria or even enter the center of bacteria and thus increase the efficacy of photothermal therapy. After the reaction of AMP-conjugated AuNPs and bacteria, the samples expose to laser light and culture the samples on agar plates and stain the bacteria with live/dead cell staining kit to determine whether the bacteria are killed. Given that the binding of AMPs to bacteria is semi-selective and that photothermal therapy is not compromised by antibiotic resistance, we expect the photothermal therapy developed in this study can be an effective and broad-spectrum therapy method and furthermore use this method to achieve a bacterial detection.

    摘要 I ABSTRACT II 致謝 III CONTENTS V TABLES VII FIGURES VIII CHAPTER 1 INTRODUCTIONS 1 1.1 Threats from the Bacterial Infections 1 1.2 Literatures Review 6 1.2.1 Antibiotics 6 1.2.2 Photodynamic Therapy 7 1.2.3 Silver Ions 8 1.2.4 Photothermal Therapy 9 1.2.5 Antimicrobial Peptides (AMPs) 12 1.3 Motivations and Objectives 15 CHAPTER 2 MATERIALS AND METHODS 17 2.1 Materials 17 2.2 Synthesis of AMP-AuNPs 17 2.3 Experimental Setup and Procedures for Photothermal Therapy 18 2.3.1 Materials and Methods 18 2.3.2 Design of Experiments 19 2.4 Data Analysis 21 2.4.1 Quantifying the Growth Area Using Matlab 21 2.4.2 Colony Counting Using ImageJ 22 2.5 Detection of Bacteria 23 CHAPTER 3 RESULTS AND DISCUSSION 24 3.1 The Ratio of AMPs and Bacteria 24 3.2 The Binding of AMP-AuNPs to Bacteria 25 3.3 The Temperature Increase during Photothermal Therapy 25 3.4 The Effects of the Ratio of AMPs to AuNPs 26 3.5 The Effects of the Ratio of AMP-AuNPs to Bacteria 27 3.6 The Stability of AMP-AuNPs Over Time 28 3.7 Effects of the pH Value of the Buffer Solution 29 3.8 Photothermal Antibacterial Therapy Using AMP functionalized-AuNPs 30 3.9 Bacterial Detection 42 CHAPTER 4 CONCLUSIONS AND FUTURE WORK 44 REFERENCES 45

    1. Allegranzi, B., et al., Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet, 2011. 377(9761): p. 228-41.
    2. Chopra, I., Antibiotic resistance in Staphylococcus aureus: concerns, causes and cures. Expert Rev Anti Infect Ther, 2003. 1(1): p. 45-55.
    3. Thomson, J.M. and Bonomo, R.A., The threat of antibiotic resistance in Gram-negative pathogenic bacteria: beta-lactams in peril! Curr Opin Microbiol, 2005. 8(5): p. 518-24.
    4. Baquero, F., Gram-positive resistance: challenge for the development of new antibiotics. Journal of Antimicrobial Chemotherapy, 1997. 39: p. 1-6.
    5. Boucher, H.W., et al., Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 2009. 48(1): p. 1-12.
    6. Walsh, T.R., Emerging carbapenemases: a global perspective. International Journal of Antimicrobial Agents, 2010. 36: p. S8-S14.
    7. Jones, K.E., et al., Global trends in emerging infectious diseases. Nature, 2008. 451(7181): p. 990-U4.
    8. Furuya, E.Y. and Lowy, F.D., Antimicrobial-resistant bacteria in the community setting. Nature Reviews Microbiology, 2006. 4(1): p. 36-45.
    9. Blot, S., Limiting the attributable mortality of nosocomial infection and multidrug resistance in intensive care units. Clinical Microbiology and Infection, 2008. 14(1): p. 5-13.
    10. Moro, M.L., et al., The Burden of Healthcare-Associated Infections in European Long-Term Care Facilities. Infection Control and Hospital Epidemiology, 2010. 31: p. S59-S62.
    11. ECDC., Transatlantic Taskforce on antimicrobial resistance. Recommendations for future collaboration between the U.S. and EU. 2011: p. 1-8.
    12. Roberts, R.R., et al., Hospital and Societal Costs of Antimicrobial-Resistant Infections in a Chicago Teaching Hospital: Implications for Antibiotic Stewardship. Clinical Infectious Diseases, 2009. 49(8): p. 1175-1184.
    13. McDonald, L.C., Trends in antimicrobial resistance in health care-associated pathogens and effect on treatment. Clin Infect Dis, 2006. 42 Suppl 2: p. S65-71.
    14. Schwaber, M.J. and Carmeli, Y., Carbapenem-resistant Enterobacteriaceae: a potential threat. JAMA, 2008. 300(24): p. 2911-3.
    15. Miriagou, V., et al., Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect, 2010. 16(2): p. 112-22.
    16. O'Riordan, K., Akilov, O.E., and Hasan, T., The potential for photodynamic therapy in the treatment of localized infections. Photodiagnosis and Photodynamic Therapy, 2005. 2(4): p. 247-262.
    17. Embleton, M.L., et al., Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin(IV) chlorin e6 conjugate. Journal of Antimicrobial Chemotherapy, 2002. 50(6): p. 857-864.
    18. Jori, G., et al., Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers in Surgery and Medicine, 2006. 38(5): p. 468-481.
    19. Fuchs, J. and Thiele, J., The role of oxygen in cutaneous photodynamic therapy. Free Radical Biology and Medicine, 1998. 24(5): p. 835-847.
    20. Tomasz, A., The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol, 1979. 33: p. 113-37.
    21. Kohanski, M.A., Dwyer, D.J., and Collins, J.J., How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol, 2010. 8(6): p. 423-35.
    22. Bodey, G.P., et al., Studies of a Patient Isolator Unit and Prophylactic Antibiotics in Cancer Chemotherapy - General Techniques and Preliminary Results. Cancer, 1968. 22(5): p. 1018-&.
    23. Dougherty, T.J., Photodynamic Therapy. Clinics in Chest Medicine, 1985. 6(2): p. 219-236.
    24. Wainwright, M., Photodynamic antimicrobial chemotherapy (PACT). Journal of Antimicrobial Chemotherapy, 1998. 42(1): p. 13-28.
    25. Bown, S.G., et al., Photodynamic therapy for cancer of the pancreas. Gut, 2002. 50(4): p. 549-557.
    26. Chen, J., et al., New technology for deep light distribution in tissue for phototherapy. Cancer Journal, 2002. 8(2): p. 154-163.
    27. Lam, M., Oleinick, N.L., and Nieminen, A.L., Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization. J Biol Chem, 2001. 276(50): p. 47379-86.
    28. Silver, S., Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiology Reviews, 2003. 27(2-3): p. 341-353.
    29. Feng, Q.L., et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 2000. 52(4): p. 662-668.
    30. Jung, W.K., et al., Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol, 2008. 74(7): p. 2171-8.
    31. Morones, J.R., et al., The bactericidal effect of silver nanoparticles. Nanotechnology, 2005. 16(10): p. 2346-53.
    32. Rai, M., Yadav, A., and Gade, A., Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv, 2009. 27(1): p. 76-83.
    33. Kennedy, L.C., et al., A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small, 2011. 7(2): p. 169-83.
    34. Zhou, F., et al., Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt, 2009. 14(2): p. 021009.
    35. Chen, J., et al., Gold nanocages as photothermal transducers for cancer treatment. Small, 2010. 6(7): p. 811-7.
    36. Huang, X.H., et al., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006. 128(6): p. 2115-2120.
    37. Zharov, V.P., et al., Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J, 2006. 90(2): p. 619-27.
    38. Wang, S., et al., Rapid colorimetric identification and targeted photothermal lysis of Salmonella bacteria by using bioconjugated oval-shaped gold nanoparticles. Chemistry, 2010. 16(19): p. 5600-6.
    39. Gobin, A.M., et al., Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small, 2010. 6(6): p. 745-52.
    40. Dickerson, E.B., et al., Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett, 2008. 269(1): p. 57-66.
    41. Norman, R.S., et al., Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Letters, 2008. 8(1): p. 302-306.
    42. Wang, Y.-W., et al., Targeted photothermal ablation of pathogenic bacterium, Staphylococcus aureus, with nanoscale reduced graphene oxide. Journal of Materials Chemistry B, 2013. 1(19): p. 2496.
    43. Ray, P.C., et al., Nanomaterials for targeted detection and photothermal killing of bacteria. Chem Soc Rev, 2012. 41(8): p. 3193-209.
    44. Jang, B., et al., Gold Nanorod-Photosensitizer Complex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo. Acs Nano, 2011. 5(2): p. 1086-1094.
    45. Tian, B., et al., Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. Acs Nano, 2011. 5(9): p. 7000-7009.
    46. Yuan, H., et al., In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine, 2012.
    47. Huang, W.C., Tsai, P.J., and Chen, Y.C., Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria. Small, 2009. 5(1): p. 51-6.
    48. Wang, C. and Irudayaraj, J., Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small, 2010. 6(2): p. 283-9.
    49. Gordon, Y.J., Romanowski, E.G., and McDermott, A.M., A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Current Eye Research, 2005. 30(7): p. 505-515.
    50. Gottlieb, C.T., et al., Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression. BMC Microbiol, 2008. 8: p. 205.
    51. Reddy, K.V., Yedery, R.D., and Aranha, C., Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004. 24(6): p. 536-47.
    52. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005. 3(3): p. 238-50.
    53. Nguyen, L.T., Haney, E.F., and Vogel, H.J., The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 2011. 29(9): p. 464-72.
    54. Midorikawa, K., et al., Staphylococcus aureus Susceptibility to Innate Antimicrobial Peptides, β-Defensins and CAP18, Expressed by Human Keratinocytes. Infection and Immunity, 2003. 71(7): p. 3730-3739.
    55. Chromek, M., et al., The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med, 2006. 12(6): p. 636-41.
    56. Fleming, A., Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. Rev Infect Dis, 1980. 2(1): p. 129-39.
    57. Levy, S.B. and Marshall, B., Antibacterial resistance worldwide: causes, challenges and responses. Nat Med, 2004. 10(12 Suppl): p. S122-9.
    58. Maisch, T., Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci, 2007. 22(2): p. 83-91.
    59. Chan, Y. and Lai, C.H., Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci, 2003. 18(1): p. 51-5.
    60. Rumalla, A., et al., Endoscopic application of photodynamic therapy for cholangiocarcinoma. Gastrointest Endosc, 2001. 53(4): p. 500-4.
    61. Harder, J., et al., Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem, 2001. 276(8): p. 5707-13.
    62. Garcia, J.R., et al., Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res, 2001. 306(2): p. 257-64.
    63. Maisetta, G., et al., Activity of Human β-Defensin 3 Alone or Combined with Other Antimicrobial Agents against Oral Bacteria. Antimicrobial Agents and Chemotherapy, 2003. 47(10): p. 3349-3351.
    64. Maisetta, G., et al., In vitro bactericidal activity of human beta-defensin 3 against multidrug-resistant nosocomial strains. Antimicrob Agents Chemother, 2006. 50(2): p. 806-9.
    65. Dommisch, H., et al., Differential gene expression of human beta-defensins (hBD-1, -2, -3) in inflammatory gingival diseases. Oral Microbiology and Immunology, 2005. 20(3): p. 186-190.
    66. Howell, M.D., et al., Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol, 2006. 121(3): p. 332-8.

    無法下載圖示 校內:2017-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE