簡易檢索 / 詳目顯示

研究生: 林于耀
Lin, Yu-Yao
論文名稱: 基於氧化鎵(β-Ga2O3)半導體之應變規與溫度感測器
Strain Gauges and Temperature Sensors Based on β-Ga2O3 Semiconductors
指導教授: 李劍
Li, Jian
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 73
中文關鍵詞: β-Ga2O3壓阻效應歐姆接觸蕭特基二極體應變規溫度感測器ICTS缺陷
外文關鍵詞: β-Ga2O3, piezoresistance, ohmic contacts, Schottky contact, strain gauges, temperature sensors, ICTS, defects
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究了在單晶β-Ga2O3塊狀晶體上製作的歐姆接觸和蕭特基二極體,分別應用於應變規和溫度感測器,以及量測二極體的電學性能,如接觸電阻率、蕭特基能障高度和反向飽和電流等,並分析感測器的傳感特性。基於Pt/ β-Ga2O3蕭特基之溫度感測器之溫度靈敏度為1.561 mV / K,為世界上首次觀察到β-Ga2O3的壓阻效應, 其相對應的室溫下應變係數為-5.85,並且觀察到GF對溫度的變化的依賴性。本研究還使用等熱電容瞬態譜來檢測位於導帶以下0.6、0.8和1.0eV的三個深度缺陷,並討論這些缺陷對電力電子器件的影響。

    This study investigated ohmic contacts and Schottky contact diodes fabricated on single-crystal β-Ga2O3 bulk crystals, applied to strain gauges and temperature sensors, respectively. This study obtained the electrical properties of the diodes such like contact resistivity, Schottky barrier height, reverse saturation current, etc. The temperature sensitivity of Pt/β-Ga2O3 Schottky diode based temperature sensor is 1.561 mV/K. This study observed the pieozoresistive effect in β-Ga2O3 for the first time in the world, which contributes to a gauge factor of -5.8 at 300K and varies with temperature. This study also used iso-thermal capacitance transient spectroscopy to detect three deep defects located at 0.6, 0.8 and 1.0 eV below the conduction band and discussed the effects of these defects on power electronic devices.

    摘要 I SUMMARY II 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1研究背景與動機 1 1-2氧化鎵簡介 3 1-3應變規簡介 6 1-4溫度感測器簡介 9 1-5電性缺陷簡介 11 第二章 元件與量測理論 12 2-1金屬-半導體接觸理論 12 2-1-1蕭特基接觸 12 2-1-2歐姆接觸 15 2-2量測理論 17 2-2-1 I-V量測 17 2-2-2 TLM 18 2-2-3 ICTS 22 第三章 元件製程與實驗架構 24 3-1元件製程 24 3-1-1有機清洗 24 3-1-2濕式蝕刻 25 3-1-3乾式蝕刻 26 3-1-4電極製備 26 3-1-5熱退火 28 3-2元件電性量測平台 28 3-3應變規實驗架構 29 3-3-1懸臂樑應變公式推導 29 3-3-2懸臂樑與平台製作 32 3-4溫度感測器實驗架構 34 3-5電容量測架構 37 第四章 元件量測結果與討論 38 4-1 Ohmic contact電性 38 4-2 Schottky 二極體電性 41 4-3缺陷分析 46 第五章 感測器量測結果與討論 52 5-1應變規量測結果 52 5-2溫度感測器量測結果 57 第六章 結論與未來工作 60 參考文獻 63

    [1] Higashiwaki, M. et al. Research and Development on Ga2O3 Transistors and Diodes. The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications. The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications, 100-103 (2013).
    [2] Oshima, T., Okuno, T., Arai, N., Kobayashi, Y. & Fujita, S. β-Al2xGa2-2xO3 Thin Film Growth by Molecular Beam Epitaxy. Japanese Journal of Applied Physics 48, 070202 (2009).
    [3] Fujita, S. Wide-Bandgap Semiconductor Materials: For Their Full Bloom. Japanese Journal of Applied Physics 54, 030101 (2015).
    [4] Sasaki, K. et al. Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy. Applied Physics Express 5, 035502 (2012).
    [5] Tippins, H. H. Optical Absorption and Photoconductivity in the Band Edge of β-Ga2O3. Physical Review 140, A316-A319 (1965).
    [6] Orita, M., Ohta, H., Hirano, M. & Hosono, H. Deep-ultraviolet Transparent Conductive β-Ga2O3 Thin Films. Applied Physics Letters 77, 4166-4168 (2000).
    [7] He, H. et al. First-Principles Study of the Structural, Electronic, and Optical Properties of β-Ga2O3 in its Monoclinic and Hexagonal Phases. Physical Review B 74, 195123 (2006).
    [8] Roy, R., Hill, V. G. & Osborn, E. F. Polymorphism of Ga2O3 and the System Ga2O3—H2O. Journal of the American Chemical Society 74, 719-722 (1952).
    [9] Stepanov, S. I., Nikolaev, V. I., Bougrov, V. E. & Romanov, A. Gallium oxide: Properties and applications - A review. Vol. 44 (2016).
    [10] von Wenckstern, H. Group-III Sesquioxides: Growth, Physical Properties and Devices. Advanced Electronic Materials 3, 1600350 (2017).
    [11] Yoshioka, S. et al. Structures and Energetics of Ga2O3 Polymorphs. Journal of Physics: Condensed Matter 19, 346211 (2007).
    [12] He, H., Blanco, M. A. & Pandey, R. Electronic and Thermodynamic Properties of β-Ga2O3. Applied Physics Letters 88, 261904 (2006).
    [13] Kroll, P., Dronskowski, R. & Martin, M. Formation of Spinel-Type Gallium Oxynitrides: A Density-Functional Study of Binary and Ternary Phases in the System Ga–O–N. Journal of Materials Chemistry 15, 3296-3302 (2005).
    [14] Playford, H. Y., Hannon, A. C., Barney, E. R. & Walton, R. I. Structures of Uncharacterised Polymorphs of Gallium Oxide from Total Neutron Diffraction. Chemistry – A European Journal 19, 2803-2813 (2013).
    [15] Saurat, M. Elaboration par la methode de zone flottante de monocristaux d'oxydes refractaires. Rev. Int. Hautes Temper. et Refract. 8, 291-304 (1971).
    [16] Kohn, J. A., Katz, G. & Broder, J. D. Characterization of β-Ga2O3 and its Alumina Isomorph, θ-Al2O3*. American Mineralogist 42, 398-407 (1957).
    [17] Marezio, M. & Remeika, J. P. Bond Lengths in the α‐Ga2O3 Structure and the High‐Pressure Phase of Ga2−xFexO3. The Journal of Chemical Physics 46, 1862-1865 (1967).
    [18] Ahman, J., Svensson, G. & Albertsson, J. A Reinvestigation of [beta]-Gallium Oxide. Acta Crystallographica Section C 52, 1336-1338 (1996).
    [19] Pohl, K. Hydrothermale Bildung von γ-Ga2O3. Naturwissenschaften 55, 82-82 (1968).
    [20] Cora, I. et al. The Real Structure of ε-Ga2O3 and its Relation to κ-phase. CrystEngComm 19, 1509-1516 (2017).
    [21] Luan, S., Dong, L. & Jia, R. Analysis of the Structural, Anisotropic Elastic and Electronic Properties of β-Ga2O3 with various pressures. Journal of Crystal Growth 505, 74-81 (2019).
    [22] Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T. & Yamakoshi, S. Gallium Oxide (Ga2O3) Metal-Semiconductor Field-Effect Transistors on Single-Crystal β-Ga2O3 (010) Substrates. Applied Physics Letters 100, 013504 (2012).
    [23] Ga2O3 Substrate Catalog, Tamura Corporation.
    [24] Geller, S. Crystal Structure of β-Ga2O3. The Journal of Chemical Physics 33, 676-684 (1960).
    [25] Mehregany, M., Zorman, C. A., Rajan, N. & Chien Hung, W. Silicon Carbide MEMS for Harsh Environments. Proceedings of the IEEE 86, 1594-1609 (1998).
    [26] Cimalla, V., Pezoldt, J. & Ambacher, O. Group III Nitride and SiC Based MEMS and NEMS: Materials Properties, Technology and Applications. Journal of Physics D: Applied Physics 40, 6386-6434 (2007).
    [27] Kroetz, G. H., Eickhoff, M. H. & Moeller, H. Silicon Compatible Materials for Harsh Environment Sensors. Sensors and Actuators A: Physical 74, 182-189 (1999).
    [28] Amano, H. Progress and Prospect of the Growth of Wide-Band-Gap Group III Nitrides: Development of the Growth Method for Single-Crystal Bulk GaN. Japanese Journal of Applied Physics 52, 050001 (2013).
    [29] Cheng, G., Chang, T.-H., Qin, Q., Huang, H. & Zhu, Y. Mechanical Properties of Silicon Carbide Nanowires: Effect of Size-Dependent Defect Density. Nano Letters 14, 754-758 (2014).
    [30] Thomson, W. XIX. On the Electro-Dynamic Qualities of metals: Effects of Magnetization on the Electric Conductivity of Nickel and of Iron. Proceedings of the Royal Society of London 8, 546-550 (1857).
    [31] Tomlinson, H. & Adams, W. G. II. On the Increase in Resistance to the Passage of an Electric Current Produced on Wires by Stretching. Proceedings of the Royal Society of London 25, 451-453 (1877).
    [32] Tomlinson, H. & Adams, W. G. I. The Influence of Stress and Strain on the Action of Physical Forces. Philosophical Transactions of the Royal Society of London 174, 1-172 (1883).
    [33] Wenner, F. A Method for Measuring Earth Resistivity. Journal of the Washington Academy of Sciences 5, 561-563 (1915).
    [34] Smith, C. S. Piezoresistance Effect in Germanium and Silicon. Physical Review 94, 42-49 (1954).
    [35] Mason, W. P. & Thurston, R. N. Use of Piezoresistive Materials in the Measurement of Displacement, Force, and Torque. The Journal of the Acoustical Society of America 29, 1096-1101 (1957).
    [36] Nielsen, H. A. From Locomotives to Strain Gages: The True Story of a Tortuous Conversion from Smokestack to High-technology Industry. Vantage Press (1985).
    [37] Loui, A. et al. The Effect of Piezoresistive Microcantilever Geometry on Cantilever Sensitivity During Surface Stress Chemical Sensing. Sensors and Actuators A: Physical 147, 516-521 (2008).
    [38] Tufte, O. N., Chapman, P. W. & Long, D. Silicon Diffused-Element Piezoresistive Diaphragms. Journal of Applied Physics 33, 3322-3327 (1962).
    [39] Esashi, M., Sugiyama, S., Ikeda, K., Wang, Y. & Miyashita, H. Vacuum-Sealed Silicon Micromachined Pressure Sensors. Proceedings of the IEEE 86, 1627-1639 (1998).
    [40] Higson, G. R. Recent Advances in Strain Gauges. Journal of Scientific Instruments 41, 405-414 (1964).
    [41] Barlian, A. A., Park, W., Mallon, J. R., Rastegar, A. J. & Pruitt, B. L. Review: Semiconductor Piezoresistance for Microsystems. Proceedings of the IEEE 97, 513-552 (2009).
    [42] Rowe, A. C. H. Piezoresistance in Silicon and its Nanostructures. Journal of Materials Research 29, 731-744 (2014).
    [43] Harkey, J. A. & Kenny, T. W. 1/f Noise Considerations for the Design and Process Optimization of Piezoresistive Cantilevers. Journal of Microelectromechanical Systems 9, 226-235 (2000).
    [44] Valdes, L. B. Resistivity Measurements on Germanium for Transistors. Proceedings of the IRE 42, 420-427 (1954).
    [45] Rolnick, H. Tension Coefficient of Resistance of Metals. Physical Review 36, 506-512 (1930).
    [46] Sun, Y., Nishida, T. & Thompson, S. E. in Strain Effect in Semiconductors: Theory and Device Applications 1-6 (Springer US, 2010).
    [47] Higashiwaki, M. et al. Temperature-Dependent Capacitance–Voltage and Current–Voltage characteristics of Pt/Ga2O3 (001) Schottky Barrier Diodes Fabricated on n-Ga2O3 Drift Layers Grown by Halide Vapor Phase Epitaxy. Applied Physics Letters 108, 133503 (2016).
    [48] Higashiwaki, M. et al. Recent Progress in Ga2O3 Power Devices. Semiconductor Science and Technology 31, 034001 (2016).
    [49] Irmscher, K., Galazka, Z., Pietsch, M., Uecker, R. & Fornari, R. Electrical Properties of β-Ga2O3 Single Crystals Grown by the Czochralski Method. Journal of Applied Physics 110, 063720 (2011).
    [50] Zhang, Z., Farzana, E., Arehart, A. R. & Ringel, S. A. Deep level Defects Throughout the Bandgap of (010) β-Ga2O3 Detected by Optically and Thermally Stimulated Defect Spectroscopy. Applied Physics Letters 108, 052105 (2016).
    [51] Huang, S.-S. et al. β-Ga2O3 Defect Study by Steady-State Capacitance Spectroscopy. Japanese Journal of Applied Physics 57, 091101 (2018).
    [52] Okushi, H. & Tokumaru, Y. Isothermal Capacitance Transient Spectroscopy. Japanese Journal of Applied Physics 20, 261 (1981).
    [53] Li, J. V. and G. Ferrari (ed.) Capacitance Spectroscopy of Semiconductors, Pan Stanford Publishing, Singapore, (2018).
    [54] Li, J. V., Johnston, S. W., Yan, Y. & Levi, D. H. Measuring Temperature-Dependent Activation Energy in thermally Activated Processes: A 2D Arrhenius Plot Method. Review of Scientific Instruments 81, 033910 (2010).
    [55] Nakano, Y. Communication—Electrical Characterization of β-Ga2O3 Single Crystal Substrates. ECS Journal of Solid State Science and Technology 6, P615-P617 (2017).
    [56] Polyakov, A. et al. Electrical Properties of Bulk Semi-Insulating β-Ga2O3 (Fe). Applied Physics Letters 113, 142102 (2018).
    [57] Wong, M. H. et al. Acceptor Doping of β-Ga2O3 by Mg and N Ion Implantations. Applied Physics Letters 113, 102103 (2018).
    [58] Ingebrigtsen, M. E. et al. Iron and Intrinsic Deep Level States in Ga2O3. Applied Physics Letters 112, 042104 (2018).
    [59] Neal, A. T. et al. Donors and deep Acceptors in β-Ga2O3. Applied Physics Letters 113, 062101 (2018).
    [60] Meilman, M. L. EPR of FE3+ Ions in Beta- Ga2O3 Crystals. Soviet Physics Solid State,Ussr 11, 1403-+ (1969).
    [61] Deák, P. et al. Choosing the Correct Hybrid for Defect Calculations: A Case Study on Intrinsic Carrier Trapping in β- Ga2O3. Physical Review B 95, 075208 (2017).
    [62] Harwig, T. & Schoonman, J. Electrical Properties of β-Ga2O3 Single Crystals. II. Journal of Solid State Chemistry 23, 205-211 (1978).
    [63] Higashiwaki, M. et al. Depletion-mode Ga2O3 Metal-Oxide-Semiconductor Field-Effect Transistors on β-Ga2O3 (010) Substrates and Temperature Dependence of Their Device Characteristics. Applied Physics Letters 103, 123511 (2013).
    [64] Wong, M. H., Sasaki, K., Kuramata, A., Yamakoshi, S. & Higashiwaki, M. Field-plated Ga2O3 MOSFETs with a Breakdown Voltage of Over 750 V. IEEE Electron Device Letters 37, 212-215 (2015).
    [65] Moser, N. et al. Ge-Doped β-Ga2O3 MOSFETs. IEEE Electron Device Letters 38, 775-778 (2017).
    [66] Murrmann, H. & Widmann, D. Current Crowding on Metal Contacts to Planar Devices. IEEE Transactions on Electron Devices 16, 1022-1024 (1969).
    [67] Bae, J., Kim, H.-Y. & Kim, J. Contacting Mechanically Exfoliated β- Ga2O3 Nanobelts for (opto) Electronic Device Applications. ECS Journal of Solid State Science and Technology 6, Q3045-Q3048 (2017).
    [68] Zeng, K. et al. Ga 2 O 3 MOSFETs Using Spin-On-Glass Source/Drain Doping Technology. IEEE Electron Device Letters 38, 513-516 (2017).
    [69] Yao, Y., Davis, R. F. & Porter, L. M. Investigation of Different Metals as Ohmic Contacts to β-Ga2O3: Comparison and Analysis of Electrical Behavior, Morphology, and other Physical Properties. Journal of Electronic Materials 46, 2053-2060 (2017).
    [70] Yao, Y. et al. Electrical Behavior of β-Ga2O3 Schottky Diodes with Different Schottky Metals. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 35, 03D113 (2017).
    [71] Nelson, H. & McVaugh, J. The Dynamics of Rotor-Bearing Systems Using Finite Elements. Journal of Engineering for Industry 98, 593-600 (1976).
    [72] Sze, S. M. & Ng, K. K. Physics of semiconductor devices. John wiley & sons, (2006).
    [73] Schroder, D. K. Semiconductor material and device characterization. John Wiley & Sons, (2006).
    [74] Rhoderick, E. H. Metal-Semiconductor Contacts. IEE Proceedings I-Solid-State and Electron Devices 129, 1 (1982).
    [75] Sasaki, K., Higashiwaki, M., Kuramata, A., Masui, T. & Yamakoshi, S. Si-ion Implantation Doping in β-Ga2O3 and its Application to Fabrication of Low-Resistance Ohmic Contacts. Applied Physics Express 6, 086502 (2013).
    [76] Shor, J. S., Goldstein, D. & Kurtz, A. D. Characterization of n-type beta-SiC as a Piezoresistor. IEEE transactions on electron devices 40, 1093-1099 (1993).
    [77] Phan, H.-P. et al. Piezoresistive Effect of p-type Single Crystalline 3C-SiC Thin Film. IEEE Electron Device Letters 35, 399-401 (2014).
    [78] Akiyama, T., Briand, D. & De Rooij, N. Design-Dependent Gauge Factors of Highly Doped n-type 4H-SiC Piezoresistors. Journal of Micromechanics and Microengineering 22, 085034 (2012).
    [79] Lee, M.-H. & Peterson, R. L. Interfacial Reactions of Titanium/Gold Ohmic Contacts with Sn-doped β- Ga2O3. APL Materials 7, 022524 (2019).
    [80] Wong, M. H., Nakata, Y., Kuramata, A., Yamakoshi, S. & Higashiwaki, M. Enhancement-Mode Ga2O3 MOSFETs with Si-ion-Implanted Source and Drain. Applied Physics Express 10, 041101 (2017).
    [81] Eickhoff, M. & Stutzmann, M. Influence of Crystal Defects on the Piezoresistive Properties of 3C–SiC. Journal of applied physics 96, 2878-2888 (2004).
    [82] Shor, J. S., Bemis, L. & Kurtz, A. D. Characterization of Monolithic n-type 6H-SiC Piezoresistive Sensing Elements. IEEE Transactions on Electron Devices 41, 661-665 (1994).
    [83] Shor, J. S., Bemis, L. & Kurtz, A. D. Characterization of Monolithic n-type 6H-SiC Piezoresistive Sensing Elements. IEEE Transactions on Electron Devices 41, 661-665 (1994).
    [84] Li, X. et al. A Giant Negative Piezoresistance Effect in 3 C-SiC Nanowires with B Dopants. Journal of Materials Chemistry C 4, 6466-6472 (2016).
    [85] Strass, J., Eickhoff, M. & Kroetz, G. in Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97). 1439-1442 vol.1432, (1997)
    [86] Herring, C. & Vogt, E. Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering. Physical Review 101, 944 (1956).
    [87] Sahli, S. & Aslam, D. Ultra-High Sensitivity Intra-Grain Poly-Diamond Piezoresistors. Sensors and Actuators A: Physical 71, 193-197 (1998).
    [88] Morin, F., Geballe, T. & Herring, C. Temperature Dependence of the Piezoresistance of High-Purity Silicon and Germanium. Physical Review 105, 525 (1957).
    [89] Kurtz, A. D. Adjusting Crystal Characteristics to Minimize Temperature Dependency. Semiconductor and Conventional Strain Gages. Academic Press, p. 259-272, (1962).
    [90] Konishi, K. et al. 1-kV Vertical Ga2O3 Field-Plated Schottky Barrier Diodes. Applied Physics Letters 110, 103506 (2017).
    [91] Matsuda, K., Kanda, Y., Yamamura, K. & Suzuki, K. Nonlinearity of Piezoresistance Effect in p-and n-type Silicon. Sensors and Actuators A: Physical 21, 45-48 (1990).
    [92] Matsuda, K., Suzuki, K., Yamamura, K. & Kanda, Y. Nonlinear Piezoresistance Effects in Silicon. Journal of Applied Physics 73, 1838-1847 (1993).
    [93] Ahmadi, E., Oshima, Y., Wu, F. & Speck, J. S. Schottky Barrier Height of Ni to β-(AlxGa1−x)2O3 with Different Compositions Grown by Plasma-Assisted Molecular Beam Epitaxy. Semiconductor Science and Technology 32, 035004 (2017).

    無法下載圖示 校內:2024-07-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE