簡易檢索 / 詳目顯示

研究生: 羅琇如
Lo, Hsiu-Ju
論文名稱: 濕式焙燒對生質物進行預處理以生產生質酒精並藉由機器學習增加葡萄糖濃度
Pretreatment of biomass by wet torrefaction to produce bioethanol and increase glucose concentration by machine learning
指導教授: 陳維新
Chen, Wei-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 107
中文關鍵詞: 廢棄物增值生質酒精和水焦炭葡萄糖濃度濕式焙燒高粱酒粕渣反應曲面方法多元適應性雲形迴歸人工神經網絡決策樹優化
外文關鍵詞: Waste valorization, Bioethanol and hydrochar, Glucose concentration, Wet torrefaction (WT), Sorghum distillery residue (SDR), Response surface methodology (RSM), Multivariate adaptive regression splines (MARS), Neural network (NN), Decision tree (DT), Optimization
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口的逐年增長,對食物和能源的需求也隨之增加,這將導致廢棄物和污染物的產生。因此,必須尋找替代能源以減少對環境的負面影響。目前,風能、水能、太陽能、生質能等許多可再生能源的應用持續增長。如今,生質物可以分為多種類型,包括農產品、固體廢棄物、工業廢物等。這些生質物材料可以通過生物化學或熱化學方法轉化為有用的生質燃料,例如沼氣、生質酒精、生質柴油等。這些方法不僅可以替代當前的能源,而且可以克服人口增長引起的能源危機。本研究也透過機器學習輔助實驗預測出生產葡萄糖的最佳濃度,有助於生質酒精的生產及應用。
    第一部分旨在通過濕式焙燒及糖化(wet torrefaction, WT)高粱酒粕渣(sorghum distillery residue, SDR)來生產水焦炭和生質酒精。實驗根據反應曲面方法(response surface methodology, RSM)中的Box-Behnken設計,其中操作條件包括硫酸濃度(0、0.01和0.02 M)、澱粉葡萄糖苷酶濃度(36、51和66 IU)和糖化時間(120、180和240分鐘)。與常規乾式焙燒相比,水焦炭收率介於13.24 %至14.73%之間,遠低於乾式焙燒生物炭(收率 > 50%)。原始高粱酒粕渣的熱值是17.15 MJ·kg-1,濕式焙燒後顯著提高到22.36-23.37 MJ·kg-1。當硫酸濃度從0 M增加到0.02 M時,產品中的葡萄糖濃度從5.59 g·L-1增加到13.05 g·L-1。方差分析的預測表明,最大葡萄糖濃度的最佳條件組合是使用濃度為0.02 M 的硫酸進行濕式焙燒後,在以66 IU濃度的酵素酶進行120分鐘的糖化,且葡萄糖濃度為30.85 g·L-1。在本研究中,獲得的最大生質酒精濃度為19.21 g·L-1,高於小麥秸稈(18.1 g·L-1)和甜高粱渣(16.2 g ·L-1)的生質酒精濃度。高粱酒生產過程中會產生大量的高粱酒粕渣,如果處理不當,可能會造成環境問題。這項研究實現高粱酒粕渣的增值,從而降低了環境污染,甚至實現了循環經濟。
    本研究中的第二部分,將機器學習應用於葡萄糖濃度的預測。人工智能(AI)已成為未來的趨勢,其中將數據提供給機器學習,然後將AI用於預測。這項研究使用數據分析來優化實驗,以便找到最佳條件並獲得用於生產生質酒精的最大葡萄糖濃度。濕式烘焙(WT)用於進行生質酒精的預處理和預測最佳條件以獲得最大葡萄糖濃度。將數據按7:4的比例分為訓練和測試數據。使用神經網絡(NN)和多元適應性雲形迴歸(MARS),然後是決策樹(DT)對材料的分類進行預測,從而對來自五種不同原料的葡萄糖濃度進行了訓練和預測。 NN的預測結果優於MARS,因此將NN訓練用於BBD實驗的預測。通過Box-Behnken設計(BBD)實驗條件在反應曲面方法(RSM)中對SDR進行了測試,並在包括溫度(170、175和180 °C)的操作條件下對AI預測結果進行了最佳驗證。 ,反應時間(10、20和30分鐘)和硫酸(0、0.01和0.02 M)。由於未獲得良好的結果,因此將BBD實驗的結果添加到訓練中(總共66個數據集),得出R2=0.997。最終,在BBD和NN中確定了0.02 M硫酸濃度的最佳條件,分別在180 °C下30分鐘和173 °C下10.5分鐘。與BBD操作條件相比,由於NN預測的溫度較低且反應時間較短,因此NN模型具有更高的成本效益。總之,神經網絡是本研究中最合適的預測方法。還已經表明,利用先驗數據可以實現訓練和預測。

    As the population grows every year, the demand for food and energy increases, which leads to the generation of waste and pollutants. Therefore, it is necessary to find alternative energy sources to reduce the negative impact on the environment. Currently, the use of wind energy, hydropower energy, solar energy, bioenergy, and many other renewable energy sources continues to grow. Today, biomass can be classified into various types, including agricultural products, solid waste, and industrial waste. These biomass materials can be biochemically or thermochemically converted into useful biofuels such as biogas, bioethanol, biodiesel, and so forth. These methods can not only replace the current energy sources but also overcome the energy crisis caused by population growth. This study also predicts the optimal concentration of glucose concentration through machine learning, which can help in the production and application of bioethanol.
    The first part aimed to go through the wet torrefaction (WT) and saccharification of sorghum distillate residue (SDR) towards hydrochar and bioethanol production. The experiments are designed by Box-Behnken design from response surface methodology where the operating conditions include sulfuric acid concentration (0, 0.01, and 0.02 M), amyloglucosidase concentration (36, 51, and 66 IU), and saccharification time (120, 180, and 240 min). Compared to conventional dry torrefaction, the hydrochar yield is between 13.24 and 14.73%, which is much lower than dry torrefaction biochar (yield > 50%). The calorific value of the raw SDR is 17.15 MJ·kg-1, which is significantly enhanced to 22.36-23.37 MJ·kg-1 after WT. When the sulfuric acid concentration increases from 0 to 0.02 M, the glucose concentration in the product increases from 5.59 g·L-1to 13.05 g·L-1. The prediction of analysis of variance suggests that the best combination to maximum glucose production is 0.02 M H2SO4, 66 IU enzyme concentration, and 120 min saccharification time, and the glucose concentration is 30.85 g·L-1. The maximum bioethanol concentration of 19.21 g·L-1 is obtained, which is higher than those from wheat straw (18.1 g·L-1) and sweet sorghum residue (16.2 g·L-1). A large amount of SDR is generated in the kaoliang liquor production process, which may cause environmental problems if it is not appropriately treated. This study fulfills SDR valorization for hydrochar and bioenergy to lower environmental pollution and even achieve a circular economy.
    For the second part, artificial intelligence (AI) has become the future trend to be used for prediction after the data is provided to machines learning. This study uses data analysis to optimize the experiment to find the best conditions and obtain the maximum concentration of glucose for the production of bioethanol. Wet torrefaction (WT) is used to perform the pretreatment of bioethanol and the prediction of the best conditions to obtain the maximum concentration of glucose. Forty-nine (49) sets of data are split into training and test data in the ratio of 7:4. Glucose concentrations from five different feedstocks are trained and predicted using a neural network (NN) and multivariate adaptive regression samples (MARS), followed by a decision tree (DT) to predict the classification of the materials. The predicted NN results are better than MARS, so the NN training is used for the prediction of the Box-Behnken design (BBD) experiment. The SDR is tested by the BBD experimental conditions in the response surface method (RSM), and the best verification of the AI prediction results is performed with operating conditions including temperature (170, 175, and 180 °C), reaction time (10, 20, and 30 min), and sulfuric acid concentration (0, 0.01, and 0.02 M). Since good results are not obtained, the results of the BBD experiment are added to the training (66 data sets in total), yielding 99.70% goodness of fit. Finally, the optimal conditions are determined in BBD and NN for 0.02 M sulfuric acid concentration at 180 °C for 30 min and at 173 °C for 10.5 min, respectively. Compared to the BBD operating conditions, the NN model is more cost-effective due to the lower temperature and shorter reaction time of the NN prediction. In conclusion, NN is the most suitable prediction method in this study. It has also been shown that training and prediction can be achieved with prior data.

    中文摘要 ii Abstract iv 誌謝 vii Table of Contents ix List of Tables xii List of Figures xiii Nomenclature xvi Chapter 1 Introduction 1 1.1. Background 1 1.2. Motivation and objectives 5 1.3. An experimental process schematic 6 Chapter 2 Literature Review 10 2.1. Effect of wet torrefaction on the production of bioethanol 10 2.2. Experimental optimization and machine learning 11 Chapter 3 Theory and Methodology 14 3.1. Sorghum distillery residue to produce bioethanol 14 3.1.1. Materials and pretreatment of the sample 14 3.1.2. Experimental setup and program 14 3.1.3. Enzymatic saccharification 15 3.1.4. Microorganism preparation 16 3.1.5. Fermentation of SDR hydrolysate 16 3.1.6. Experiment analysis 16 3.1.7. Box-Behnken design (BBD) and analysis of variance (ANOVA) 19 3.2. Machine learning predicts glucose concentration from biomass wet torrefaction 22 3.2.1. Materials and pretreatment 22 3.2.2. Microwave heating acid hydrolysis pretreatment experiment device and program 22 3.2.3. Experimental design 23 3.2.4. Data-driven modeling 24 3.2.5. Experimental analysis 26 Chapter 4 Results and Discussion 33 4.1. Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy 33 4.1.1. Raw SDR composition 33 4.1.2. Effect of sulfuric acid concentration 37 4.1.3. Effect of saccharification 53 4.1.4. Bioethanol productivity 60 4.2. Forecast of glucose production from biomass wet torrefaction using multivariate adaptive regression splines (MARS), neural network (NN) and decision tree 62 4.2.1. Raw biomass composition 62 4.2.2. Data training and prediction of different biomass 64 4.2.3. Data training and prediction of SDR under different WT conditions 78 4.2.4. Optimization and verification of NN data training and prediction BBD 83 Chapter 5 Conclusions and Future Works 89 5.1. Conclusions 89 5.2. Future works 92 Appendix A: Experiment Repeatability 93 Appendix B: Instrument Pictures 94 References 96 自述 106

    [1] Kurokawa J, Ohara T, Morikawa T, Hanayama S, Janssens-Maenhout G, Fukui T, et al. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmospheric Chemistry and Physics. 2013;13:11019-58.
    [2] Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew Sust Energ Rev. 2010;14:217-32.
    [3] Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 2002;83:1-11.
    [4] Chen F, Lu S-M, Tseng K-T, Lee S-C, Wang E. Assessment of renewable energy reserves in Taiwan. Renewable and Sustainable Energy Reviews. 2010;14:2511-28.
    [5] Yue D, You F, Snyder SW. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering. 2014;66:36-56.
    [6] John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. 2011;102:186-93.
    [7] Moravvej Z, Makarem MA, Rahimpour MR. The fourth generation of biofuel. Second and Third Generation of Feedstocks2019. p. 557-97.
    [8] Mészáros E, Jakab E, Gáspár M, Réczey K, Várhegyi G. Thermal behavior of corn fibers and corn fiber gums prepared in fiber processing to ethanol. Journal of Analytical and Applied Pyrolysis. 2009;85:11-8.
    [9] Geddes CC, Mullinnix MT, Nieves IU, Hoffman RW, Sagues WJ, York SW, et al. Seed train development for the fermentation of bagasse from sweet sorghum and sugarcane using a simplified fermentation process. Bioresour Technol. 2013;128:716-24.
    [10] Castro E, Nieves IU, Rondón V, Sagues WJ, Fernández-Sandoval MT, Yomano LP, et al. Potential for ethanol production from different sorghum cultivars. Industrial Crops and Products. 2017;109:367-73.
    [11] Chen YD, Liu FY, Ren NQ, Ho SH. Revolutions in algal biochar for different applications: State-of-the-art techniques and future scenarios. Chin Chem Lett. 2020;31:2591-602.
    [12] Elshobary M, El-shenody R, Abomohra AE-F. Sequential biofuel production from seaweeds enhances the energy recovery: A case study for biodiesel and bioethanol production. International Journal of Energy Research. 2021.
    [13] Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K. Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy & Environmental Science. 2011;4.
    [14] Nurfahmi, Ong HC, Jan BM, Tong CW, Fauzi H, Chen W-H. Effects of organosolv pretreatment and acid hydrolysis on palm empty fruit bunch (PEFB) as bioethanol feedstock. Biomass and Bioenergy. 2016;95:78-83.
    [15] Nasidi M, Agu R, Deeni Y, Walker G. Improved production of ethanol using bagasse from different sorghum cultivars. Biomass and Bioenergy. 2015;72:288-99.
    [16] Kumar H, Sarma AK, Kumar P. A novel approach to study the effect of cetane improver on performance, combustion and emission characteristics of a CI engine fuelled with E20 (diesel – bioethanol) blend. Sustainable Chemistry and Pharmacy. 2019;14.
    [17] Ghadikolaei MA, Cheung CS, Yung K-F. Comparison between blended mode and fumigation mode on combustion, performance and emissions of a diesel engine fueled with ternary fuel (diesel-biodiesel-ethanol) based on engine speed. Journal of the Energy Institute. 2019;92:1233-50.
    [18] Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science. 2011;37:52-68.
    [19] Balat M, Balat H, Öz C. Progress in bioethanol processing. Progress in Energy and Combustion Science. 2008;34:551-73.
    [20] Wooley R, Ruth M, Glassner D, Sheehan J. Process design and costing of bioethanol technology: A tool for determining the status and direction of research and development. Biotechnol Prog. 1999;15:794-803.
    [21] Brennan L, Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14:557-77.
    [22] Marzialetti T, Valenzuela Olarte MB, Sievers C, Hoskins TJC, Agrawal PK, Jones CW. Dilute acid hydrolysis of Loblolly Pine: A comprehensive approach. Industrial & Engineering Chemistry Research. 2008;47:7131-40.
    [23] Fagernäs L, Brammer J, Wilén C, Lauer M, Verhoeff F. Drying of biomass for second generation synfuel production. Biomass and Bioenergy. 2010;34:1267-77.
    [24] Bach QV, Skreiberg O. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renew Sust Energ Rev. 2016;54:665-77.
    [25] Bach Q-V, Skreiberg Ø. Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. Renewable and Sustainable Energy Reviews. 2016;54:665-77.
    [26] Xiao L-P, Shi Z-J, Xu F, Sun R-C. Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol. 2012;118:619-23.
    [27] Bach Q-V, Chen W-H, Lin S-C, Sheen H-K, Chang J-S. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Conversion and Management. 2017;141:163-70.
    [28] Chen WH, Ye SC, Sheen HK. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol. 2012;118:195-203.
    [29] Gan MJ, Lim WS, Ng HX, Ong MH, Gan S, Lee LY, et al. Enhancement of Palm Kernel Shell Fuel Properties via Wet Torrefaction: Response Surface, Optimization, and Combustion Studies. Energy & Fuels. 2019;33:11009-20.
    [30] Ooshima H, Aso K, Harano Y, Yamamoto T. Microwave treatment of cellulosic materials for their enzymatic hydropysis. Biotechnology Letters. 1984;6:289–94.
    [31] Jones DA, Lelyveld TP, Mavrofidis SD, Kingman SW, Miles NJ. Microwave heating applications in enviromnental engineering - a review. Resources, Conservation and Recycling
    2002;34:75-90.
    [32] Sridar V. Microwave radiation as a catalyst for chemical reactions. Current Science. 1998;74:446-50.
    [33] Kitchaiya P, Intanakul P, Krairiksh M. Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric-pressure. Journal of Wood Chemistry and Technology. 2003;23:217-25.
    [34] Chen W-H, Tu Y-J, Sheen H-K. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy. 2011;88:2726-34.
    [35] Chen W-H, Ye S-C, Sheen H-K. Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Applied Energy. 2012;93:237-44.
    [36] Pan BS. The functional compounds of sorghum distillery residue and their enhancing temperature adaptation effects on fishes. Journal of Experimental Food Chemistry. 2017;03.
    [37] Ahmed PM, de Figueroa LIC, Pajot HF. Dual purpose of ligninolytic- basidiomycetes: mycoremediation of bioethanol distillation vinasse coupled to sustainable bio-based compounds production. Fungal Biology Reviews. 2020;34:25-40.
    [38] Wang C-Y, Ng C-C, Lin H-T, Shyu Y-T. Free radical-scavenging and tyrosinase-inhibiting activities of extracts from sorghum distillery residue. Journal of Bioscience and Bioengineering. 2011;111:554-6.
    [39] Chen HC, Chiang RHL, Storey VC. Business intelligence and analytics: from big data to big impact. Mis Q. 2012;36:1165-88.
    [40] Chen CLP, Zhang CY. Data-intensive applications, challenges, techniques and technologies: A survey on big data. Inf Sci. 2014;275:314-47.
    [41] Tsai CL. How do US stock returns respond differently to oil price shocks pre-crisis, within the financial crisis, and post-crisis? Energy Econ. 2015;50:47-62.
    [42] Allam Z, Dhunny ZA. On big data, artificial intelligence and smart cities. Cities. 2019;89:80-91.
    [43] Xia BS, Gong P. Review of business intelligence through data analysis. Benchmarking: An International Journal. 2014.
    [44] Friedman JH. Multivariate adaptive regression splines. Ann Stat. 1991;19:1-67.
    [45] Guenther FH. Neural networks: Biological models and applications. In: Smelser NJ, Baltes PB, editors. International Encyclopedia of the Social & Behavioral Sciences. Oxford: Pergamon; 2001. p. 10534-7.
    [46] Casas I. Neural networks. In: Kitchin R, Thrift N, editors. International Encyclopedia of Human Geography. Oxford: Elsevier; 2009. p. 419-22.
    [47] Kiang MY. Neural networks. In: Bidgoli H, editor. Encyclopedia of Information Systems. New York: Elsevier; 2003. p. 303-15.
    [48] Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. An introduction to decision tree modeling. Journal of Chemometrics: A Journal of the Chemometrics Society. 2004;18:275-85.
    [49] Pollack ME. Artificial intelligence - a modern approach - a review. AI Magazine. 1995;16:73-.
    [50] Yu KL, Chen W-H, Sheen H-K, Chang J-S, Lin C-S, Ong HC, et al. Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel. 2020;279.
    [51] Lee OK, Lee EY. Sustainable production of bioethanol from renewable brown algae biomass. Biomass and Bioenergy. 2016;92:70-5.
    [52] Ahmed S, Islam MT, Karim MA, Karim NM. Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh. Renewable Energy. 2014;72:223-35.
    [53] Khayum N, Anbarasu S, Murugan S. Combined effect of fuel injecting timing and nozzle opening pressure of a biogas-biodiesel fuelled diesel engine. Fuel. 2020;262.
    [54] Maurya DP, Singla A, Negi S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 2015;5:597-609.
    [55] Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology. 1999;24:151-9.
    [56] Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, et al. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv. 2014;32:934-51.
    [57] Jeong TS, Choi CH, Lee JY, Oh KK. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii. Bioresour Technol. 2012;116:435-40.
    [58] Lin HC, Jhao RY, Fujimoto N. Mixing sorghum distillery residue biochar with old corrugated cardboard and cattle manure to develop degradable biochar plug. J Fac Agric Kyushu Univ. 2019;64:335-44.
    [59] Kuo WR, Yeh NC, Fujimoto N, Lin HC. Physicochemical properties and fertility index of culture media containing distillery residue biochar and their applications to plug seedling. J Fac Agric Kyushu Univ. 2019;64:127-35.
    [60] Lin HC, Yeh JH, Tsai KY, Lian JY, Chen MH, Huang WC, et al. Blending agricultural and forestry wastes in wine sludge to develop degradable sludge biochar medium pellet. J Fac Agric Kyushu Univ. 2018;63:371-8.
    [61] Lin HC, Hu JS, Lee WJ, Lai YJ, Wu SC, Fujimoto N. A study of sorghum distillery residue activated carbon for water purification. Journal of the Faculty of Agriculture, Kyushu University. 2015;60:435-43.
    [62] Tseng SH, Chen LG, Lai YJ, Wang KT, Wang CC. Effects of different forages on the chemical compositions and antiosteoporotic activities of velvet antlers. Animal Science Journal. 2016;87:989-96.
    [63] Chatzifragkou A, Prabhakumari PC, Kosik O, Lovegrove A, Shewry PR, Charalampopoulos D. Extractability and characteristics of proteins deriving from wheat DDGS. Food Chem. 2016;198:12-9.
    [64] Yildirim O, Ozkaya B, Altinbas M, Demir A. Statistical optimization of dilute acid pretreatment of lignocellulosic biomass by response surface methodology to obtain fermentable sugars for bioethanol production. International Journal of Energy Research. 2021;n/a.
    [65] El-Dalatony MM, Kurade MB, Abou-Shanab RAI, Kim H, Salama ES, Jeon BH. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresour Technol. 2016;219:98-105.
    [66] Sebayang AH, Masjuki HH, Ong HC, Dharma S, Silitonga AS, Kusumo F, et al. Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Industrial Crops and Products. 2017;97:146-55.
    [67] Humbird D, Fei Q. Scale-Up Considerations for Biofuels. Biotechnology for Biofuel Production and Optimization2016. p. 513-37.
    [68] Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: An overview. Renewable Energy. 2012;37:19-27.
    [69] Yu KL, Chen WH, Sheen HK, Chang JS, Lin CS, Ong HC, et al. Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel. 2020;279:11.
    [70] Chen YH, Lee SM, Hsu JC, Yang SK, Chao PY, Liu JY, et al. Effects of Sorghum Distillery Residue Supplemented with Ocimum gratissimum on Erythrocyte Profiles, Egg Traits, and Immunity of Laying Hens. Z Arznei- Gewurzpflanzen. 2018;23:91-7.
    [71] Kuo WR, Huang JJ, Fujimoto N, Lin HC. Physicochemical Properties of Biochar Derived from Agricultural and Forestry Processing Wastes as Cultural Medium Substance and Its Effect on Growth Quality of Vegetable Plug Seedlings. Journal of the Faculty of Agriculture Kyushu University. 2018;63:361-70.
    [72] Tseng SH, Chen LG, Lai YJ, Wang KT, Wang CC. Effects of different forages on the chemical compositions and antiosteoporotic activities of velvet antlers. Anim Sci J. 2016;87:989-96.
    [73] Chatzifragkou A, Prabhakumari PC, Kosik O, Lovegrove A, Shewry PR, Charalampopoulos D. Extractability and characteristics of proteins deriving from wheat DDGS. Food Chem. 2016;198:12-9.
    [74] Lin HC, Hu JS, Lee WJ, Lai YJ, Wu SC, Fujimoto N. A Study of Sorghum Distillery Residue Activated Carbon for Water Purification. Journal of the Faculty of Agriculture Kyushu University. 2015;60:435-43.
    [75] Lin HC, Hu JS, Lee WJ, Peng CW, Lai YJ, Wu SC, et al. Adsorption Characteristics and Pore Structure of Activated Carbons Prepared from Sorghum Distillery Residue. Journal of the Faculty of Agriculture Kyushu University. 2015;60:173-82.
    [76] Kabugo JC, Jamsa-Jounela SL, Schiemann R, Binder C. Industry 4.0 based process data analytics platform: A waste-to-energy plant case study. Int J Electr Power Energy Syst. 2020;115:18.
    [77] Proud R, Mangeni-Sande R, Kayanda RJ, Cox MJ, Nyamweya C, Ongore C, et al. Automated classification of schools of the silver cyprinid Rastrineobola argentea in Lake Victoria acoustic survey data using random forests. ICES J Mar Sci. 2020;77:1379-90.
    [78] Moe KT, Owari T, Furuya N, Hiroshima T, Morimoto J. Application of UAV photogrammetry with LiDAR data to facilitate the estimation of tree locations and DBH values for high-value timber species in Northern Japanese mixed-wood forests. Remote Sens. 2020;12:19.
    [79] Atalah J, Forrest B. Forecasting mussel settlement using historical data and boosted regression trees. Aquac Environ Interact. 2019;11:625-38.
    [80] Guneralp I, Filippi AM, Randall J. Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling. Int J Appl Earth Obs Geoinf. 2014;33:119-26.
    [81] Mai NL, Kim CK, Park B, Park HJ, Lee SH, Koo YM. Prediction of cellulose dissolution in ionic liquids using molecular descriptors based QSAR model. J Mol Liq. 2016;215:541-8.
    [82] Pocas I, Goncalves J, Costa PM, Goncalves I, Pereira LS, Cunha M. Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. Int J Appl Earth Obs Geoinf. 2017;58:177-90.
    [83] Rangel CJ, Hernandez MA, Mosquera JD, Castro Y, Cabeza IO, Acevedo PA. Hydrogen production by dark fermentation process from pig manure, cocoa mucilage, and coffee mucilage. Biomass Conversion and Biorefinery. 2021;11:241-50.
    [84] Nieto PJG, Garcia-Gonzalo E, Lasheras FS, Paredes-Sanchez JP, Fernandez PR. Forecast of the higher heating value in biomass torrefaction by means of machine learning techniques. J Comput Appl Math. 2019;357:284-301.
    [85] Drzewiecki W. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models. Geod Cartogr. 2016;65:193-218.
    [86] Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Mahari WAW, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions. Chemical Engineering Journal. 2020;389:124401.
    [87] Chen W-H, Ye S-C, Sheen H-K. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol. 2012;118:195-203.
    [88] Chen W-H, Huang M-Y, Chang J-S, Chen C-Y. Torrefaction operation and optimization of microalga residue for energy densification and utilization. Applied Energy. 2015;154:622-30.
    [89] Phwan CK, Chew KW, Sebayang AH, Ong HC, Ling TC, Malek MA, et al. Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnology for Biofuels. 2019;12:191.
    [90] Chen WH, Tu YJ, Sheen HK. Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. International Journal of Energy Research. 2010;34:265-74.
    [91] Chiu C-T, Lin C-Y, Yen C-Y, Tsai M-T, Chang H-C, Liu Y-C, et al. Mechanistic and compositional studies of the autophagy-inducing areca nut ingredient. Journal of Dental Sciences. 2020;15:526-35.
    [92] Davidson J, Mathieson J, Boyne AW. Use of automation in determining nitrogen by Kjeldahl method, with final calulations by computer. Analyst. 1970;95:181-+.
    [93] Rao JS, Kumar B. 3D Blade root shape optimization. 10th International Conference on Vibrations in Rotating Machinery2012. p. 173-88.
    [94] Ait-Amir B, Pougnet P, El Hami A. 6 - meta-model development. In: El Hami A, Pougnet P, editors. Embedded Mechatronic Systems 2 (Second Edition): ISTE; 2020. p. 157-87.
    [95] Gan YY, Ong HC, Chen W-H, Sheen H-K, Chang J-S, Chong CT, et al. Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. Journal of Cleaner Production. 2020;253:119944.
    [96] Teh YY, Lee KT, Chen WH, Lin SC, Sheen HK, Tan IS. Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresour Technol. 2017;246:20-7.
    [97] Chen W-H, Lo H-J, Yu K-L, Ong H-C, Sheen H-K. Valorization of sorghum distillery residue to produce bioethanol for pollution mitigation and circular economy. Environmental Pollution. 2021;285:117196.
    [98] Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN. Microwave-assisted proteomics. Mass Spectrometry Reviews. 2007;26:657-71.
    [99] Yu KL, Chen W-H, Sheen H-K, Chang J-S, Lin C-S, Ong HC, et al. Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel. 2020;279:118435.
    [100] Lewis PA, Stevens JG. Nonlinear modeling of time series using multivariate adaptive regression splines (MARS). Journal of the American Statistical Association. 1991;86:864-77.
    [101] Zhang WG, Goh ATC. Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Computers and Geotechnics. 2013;48:82-95.
    [102] Cheng M-Y, Cao M-T. Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing. 2014;22:178-88.
    [103] Sánchez-Lasheras F, de Andrés J, Lorca P, de Cos Juez FJ. A hybrid device for the solution of sampling bias problems in the forecasting of firms’ bankruptcy. Expert Systems with Applications. 2012;39:7512-23.
    [104] Al-Musaylh MS, Deo RC, Adamowski JF, Li Y. Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Advanced Engineering Informatics. 2018;35:1-16.
    [105] Freeman JA, Skapura DM. Neural networks: algorithms, applications, and programming techniques: Addison Wesley Longman Publishing Co., Inc.; 1991.
    [106] Chiu C-C, Tien C-C, Chou Y-C. Construction of clustering and classification models by integrating fuzzy art, cart and neural network approaches. Journal of the Chinese Institute of Industrial Engineers. 2005;22:171-88.
    [107] Chang C-L, Chen C-H. Applying decision tree and neural network to increase quality of dermatologic diagnosis. Expert Systems with Applications. 2009;36:4035-41.
    [108] Riedmiller M, Braun H. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. IEEE International Conference on Neural Networks1993. p. 586-91.
    [109] Chen C-S, Lin J-M. Applying Rprop neural network for the prediction of the mobile station location. Sensors. 2011;11.
    [110] Zhou Y, Li D, Huo S, Kung S-Y. Shape autotuning activation function. Expert Systems with Applications. 2021;171:114534.
    [111] Hu Z. The study of neural network adaptive control systems. Control and Decision. 1992;7:361-6.
    [112] Hikawa H. A digital hardware pulse-mode neuron with piecewise linear activation function. IEEE Transactions on Neural Networks. 2003;14:1028-37.
    [113] Liao Z, Carneiro G. On the importance of normalisation layers in deep learning with piecewise linear activation units. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV)2016. p. 1-8.
    [114] Ross J, Morgan Q. Book review: C4. 5: Programs for machine learning. Machine Learning. 1994;1:235-40.
    [115] Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal. 2015;13:8-17.
    [116] Chien C, Wang I, Chen L. Using data mining to improve the quality of human resource management of operators in semiconductor manufactures. Journal of Quality. 2005;12:9-28.
    [117] Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Computers & Chemistry. 2001;26:5-14.
    [118] Deng J, Wang G-j, Kuang J-h, Zhang Y-l, Luo Y-h. Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Applied Pyrolysis. 2009;86:331-7.
    [119] Chen W-H, Cheng C-L, Lee K-T, Lam SS, Ong HC, Ok YS, et al. Catalytic level identification of ZSM-5 on biomass pyrolysis and aromatic hydrocarbon formation. Chemosphere. 2021;271:129510.
    [120] Lin BJ, Chen WH, Lin YY, Chang JS, Farooq A, Singh Y, et al. An evaluation of thermal characteristics of bacterium Actinobacillus succinogenes for energy use and circular bioeconomy. Bioresour Technol. 2020;301:8.
    [121] Lu J-J, Chen W-H. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy. 2015;160:49-57.
    [122] Azizi K, Moshfegh Haghighi A, Keshavarz Moraveji M, Olazar M, Lopez G. Co-pyrolysis of binary and ternary mixtures of microalgae, wood and waste tires through TGA. Renewable Energy. 2019;142:264-71.
    [123] Lin B-J, Chen W-H, Lin Y-Y, Chang J-S, Farooq A, Singh Y, et al. An evaluation of thermal characteristics of bacterium Actinobacillus succinogenes for energy use and circular bioeconomy. Bioresour Technol. 2020;301:122774.
    [124] Medic D, Darr M, Shah A, Potter B, Zimmerman J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel. 2012;91:147-54.
    [125] Yu KL, Chen WH, Sheen HK, Chang JS, Lin CS, Ong HC, et al. Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment. Renewable Energy. 2020;156:349-60.
    [126] Lynam JG, Reza MT, Yan W, Vásquez VR, Coronella CJ. Hydrothermal carbonization of various lignocellulosic biomass. Biomass Conversion and Biorefinery. 2015;5:173-81.
    [127] Yang W, Shimanouchi T, Iwamura M, Takahashi Y, Mano R, Takashima K, et al. Elevating the fuel properties of Humulus lupulus, Plumeria alba and Calophyllum inophyllum L. through wet torrefaction. Fuel. 2015;146:88-94.
    [128] Chen W-H, Wang C-W, Kumar G, Rousset P, Hsieh T-H. Effect of torrefaction pretreatment on the pyrolysis of rubber wood sawdust analyzed by Py-GC/MS. Bioresour Technol. 2018;259:469-73.
    [129] Lin Y, Liao YF, Yu ZS, Fang SW, Ma XQ. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energy Conversion and Management. 2017;151:190-8.
    [130] Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol. 2009;100:6496-504.
    [131] Wang X, Liu X, Wang G. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. Journal of Integrative Plant Biology. 2011;53:246-52.
    [132] Wang XQ, Wang G, Yu XX, Chen H, Sun Y, Chen G. Pretreatment of corn stover by solid acid for D-lactic acid fermentation. Bioresour Technol. 2017;239:490-5.
    [133] Fakhri A. Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: Optimization using response surface methodology. Process Safety and Environmental Protection. 2015;93:1-8.
    [134] Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry. 2004;39:1843-8.
    [135] Choi SP, Nguyen MT, Sim SJ. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol. 2010;101:5330-6.
    [136] Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences. 2006;103:11206.
    [137] Teh YY, Lee KT, Chen W-H, Lin S-C, Sheen H-K, Tan IS. Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresour Technol. 2017;246:20-7.
    [138] Kalbitz K, Schmerwitz J, Schwesig D, Matzner E. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma. 2003;113:273-91.
    [139] Acharya B, Dutta A, Minaret J. Review on comparative study of dry and wet torrefaction. Sustainable Energy Technologies and Assessments. 2015;12:26-37.
    [140] Kang W-S, Im KH, Choi JY. SVDD-Based method for fast training of multi-class support vector classifier. In: Wang J, Yi Z, Zurada JM, Lu B-L, Yin H, editors. Advances in Neural Networks - ISNN 2006. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. p. 991-6.
    [141] Bonifazi P, Difato F, Massobrio P, Breschi GL, Pasquale V, Levi T, et al. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses. Frontiers in Neural Circuits. 2013;7:40.
    [142] Seide F, Li G, Yu D. Conversational speech transcription using context-dependent deep neural networks. Twelfth annual conference of the international speech communication association2011.
    [143] Sprent P. Linear statistical inference and its applications by C. Radhakrishna Rao. Journal of the Royal Statistical Society. 1974;137:93-4.
    [144] Nagelkerke NJD. A note on a general definition of the coefficient of determination Biometrika. 1991;78:691-2.
    [145] Oh K-S, Jung K. GPU implementation of neural networks. Pattern Recognition. 2004;37:1311-4.
    [146] Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecological Modelling. 2000;135:147-86.
    [147] Nielsen M. Neural networks and deep learning: Determination press San Francisco, CA; 2015.
    [148] Tretter MJ. Data mining. In: Bidgoli H, editor. Encyclopedia of Information Systems. New York: Elsevier; 2003. p. 477-88.
    [149] Sinha S, Singh T, Singh V, Verma A. Epoch determination for neural network by self-organized map (SOM). Computational Geosciences. 2010;14:199-206.
    [150] Zhang W, Goh ATC. Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geoscience Frontiers. 2016;7:45-52.
    [151] Boussarsar H, Rogé B, Mathlouthi M. Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour Technol. 2009;100:6537-42.
    [152] Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution. 2010;1:103-13.
    [153] Tehrany MS, Pradhan B, Jebur MN. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol. 2013;504:69-79.
    [154] Dien BS, Jung H-JG, Vogel KP, Casler MD, Lamb JFS, Iten L, et al. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy. 2006;30:880-91.
    [155] Maier HR, Dandy GC. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ Modell Softw. 2000;15:101-24.
    [156] Chen W-H, Lin B-J, Lin Y-Y, Chu Y-S, Ubando AT, Show PL, et al. Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science. 2021;82:100887.
    [157] Hoff KJ, Tech M, Lingner T, Daniel R, Morgenstern B, Meinicke P. Gene prediction in metagenomic fragments: A large scale machine learning approach. BMC Bioinformatics. 2008;9:14.
    [158] Sahoo C, Gupta AK. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. Journal of Hazardous Materials. 2012;215-216:302-10.
    [159] Delacre M, Leys C, Mora YL, Lakens D. Taking parametric assumptions seriously: arguments for the use of Welch's F-test instead of the classical F-test in one-way ANOVA. Int Rev Soc Psychol. 2019;32:12.
    [160] Brown MB, Forsythe AB. Robust tests for the equality of variances. Journal of the American Statistical Association. 1974;69:364-7.

    無法下載圖示 校內:2026-08-17公開
    校外:2026-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE