| 研究生: |
陳韋帆 Chen, Wei-Fan |
|---|---|
| 論文名稱: |
探討alpk2/3基因在斑馬魚心臟功能的角色 The role of alpk2/3 in cardiac function of zebrafish |
| 指導教授: |
盧福翊
Lu, Fu-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 斑馬魚 、心肌症 、心律不整 |
| 外文關鍵詞: | zebrafish, cardiomyopathy, arrhythmia |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
原發性心肌症的發病涉及諸多基因與機制,先前利用心臟衰竭小鼠模型觀察到擴張型心肌症(dilated cardiomyopathy, DCM)相關的表型,利用數量性狀基因座與表現模式比對結果,篩選出 Hrtfm4 基因座上的 Alpk2 基因與心臟衰竭具高度相關。先前文獻指出與小鼠的 ALPK2 具高度同源(45%)的 ALPK3 缺陷會導致小鼠心臟病變。暗示與小鼠的 ALPK2 胺基酸具高度同源性的斑馬魚的 alpk2 及 alpk3 對於心臟可能有類似功能。藉由原位雜交染色觀察到斑馬魚 alpk2 及 alpk3 基因會專一性表達在心臟及骨骼肌。經由 morpholino 技術的抑制與 CRISPR/Cas9 系統進行基因突變,兩者皆觀察到 alpk2 基因缺陷的斑馬魚胚胎會有心臟周圍積血及積水現象。利用影像分析軟體,顯示心臟積血的胚胎具有心臟收縮功能降低與心跳間期延長的現象。耐受性游泳實驗結果顯示 alpk2 基因突變的成魚表現出運動能力下降的現象。經由都卜勒心臟超音波掃描觀察到 alpk2 基因突變魚有高比例患有心律不整病徵,暗示 alpk2基因突變魚的運動缺陷可能來源於心律不整。藉由穿透式電子顯微鏡觀察結果,初步判斷心律不整可能來源於心臟粒線體的缺陷,然而其詳細的致病機制仍待釐清。本實驗結果推測 alpk2 基因對於斑馬魚胚胎及成魚心臟功能的進行扮演重要的角色。
Primitive cardiomyopathy is the myocardium functionally abnormal and the pathogenesis is polygenic. In human, the syndrome of heart failure is characterized by the fatigue, even during light exercise. The most outcome of cardiomyopathy is heart failure, which may be caused by many conditions that damage the cardiomyocytes. By using quantitative trait locus mapping to identify the heart failure modify (Hrtfm) loci in heart failure model mice. Alpk2, in Hrtfm4, is a strong candidate gene related to dilated cardiomyopathy. Alpk1/2/3 are three members which belong to alpha kinase family. After analyzing the amino acid sequence between the members of Alpk family, we had discovered that Alpk2 was closer to Alpk3 (45%) than to Alpk1 (21%) in the mice. There are also orthologous alpk1/2/3 in the zebrafish genome. The amino acid sequence of alpk2 in the mice was closer to alpk2 and alpk3 in the zebrafish. In addition, alpk2 and alpk3 in zebrafish were also expressed in heart and skeletal muscle detected by whole mount in situ hybridization. In our lab, we found alpk2 mutant zebrafish phenocopied the alpk2 morphant, and both of which showed pericardial edema and heart blood congestion. The embryos with heart blood congestion had reduced FS (fractional shortening), which improved they had impaired efficiency of the heart contraction dysfunction and pathogenesis about DCM (dilated cardiomyopathy). Due to alpk2-deficient larva showed lower survival rate, we designed the endurance exercise experiments to test whether the alpk2 mutant adult fish had deficient heart function. The results showed alpk2 mutant fish declined in exercise capability which might related to cardiovascular system. By using Doppler echocardiography technology, we observed alpk2 mutant fish had arrhythmia, which were similar to the result of DCM in human. Those experiments showed alpk2 mutant fish had defects in cardiac function. The primitive reasons for our pre-judgement was that mitochondria-deficient due to the ultrastructural analysis by transmission electron microscopy. However, the detail of the molecular pathogenesis is still needed to be elucidated.
謝季翰,探討Alpk2/3在斑馬魚心臟發育的角色,國立成功大學生物科技研究所碩士論文,2017。
Abiola, O., Angel, J. M., Avner, P., Bachmanov, A. A., Belknap, J. K., Bennett, B., Blankenhorn, E. P., Blizard, D. A., Bolivar, V., Brockmann, G. A., Buck, K. J., Bureau, J.-F., Casley, W. L., Chesler, E. J., Cheverud, J. M., Churchill, G. A., Cook, M., Crabbe, J. C., Crusio, W. E., Darvasi, A., de Haan, G., Dermant, P., Doerge, R. W., Elliot, R. W., Farber, C. R., Flaherty, L., Flint, J., Gershenfeld, H., Gibson, J. P., Gu, J., Gu, W., Himmelbauer, H., Hitzemann, R., Hsu, H. C., Hunter, K., Iraqi, F. F., Jansen, R. C., Johnson, T. E., Jones, B. C., Kempermann, G., Lammert, F., Lu, L., Manly, K. F., Matthews, D. B., Medrano, J. F., Mehrabian, M., Mittlemann, G., Mock, B. A., Mogil, J. S., Montagutelli, X., Morahan, G., Mountz, J. D., Nagase, H., Nowakowski, R. S., O'Hara, B. F., Osadchuk, A. V., Paigen, B., Palmer, A. A., Peirce, J. L., Pomp, D., Rosemann, M., Rosen, G. D., Schalkwyk, L. C., Seltzer, Z. e., Settle, S., Shimomura, K., Shou, S., Sikela, J. M., Siracusa, L. D., Spearow, J. L., Teuscher, C., Threadgill, D. W., Toth, L. A., Toye, A. A., Vadasz, C., Van Zant, G., Wakeland, E., Williams, R. W., Zhang, H.-G., Zou, F. and Complex Trait, C. The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics 4, 911-916, 2003.
Almomani, R., Verhagen, J. M. A., Herkert, J. C., Brosens, E., Spaendonck, K. Y., Asimaki, A., van der Zwaag, P. A., Frohn Mulder, I. M. E., Bertoli Avella, A. M., Boven, L. G., van Slegtenhorst, M. A., van der Smagt, J. J., van Ijcken, W. F. J., Timmer, B., van Stuijvenberg, M., Verdijk, R. M., Saffitz, J. E., du Plessis, F. A., Michels, M., Hofstra, R. M. W., Sinke, R. J., van Tintelen, J. P., Wessels, M. W., Jongbloed, J. D. H. and van de Laar, I. M. B. H. Biallelic Truncating Mutations in alpk3 Cause Severe Pediatric Cardiomyopathy. Journal of the American College of Cardiology 67, 515, 2016.
Andrés, D. L. and Mercader, N. Interplay between cardiac function and heart development. Biochimica et Biophysica Acta-Molecular Cell Research 1863, 1707-1716, 2016.
Assomull, R. G., Prasad, S. K., Lyne, J., Smith, G., Burman, E. D., Khan, M., Sheppard, M. N., Poole Wilson, P. A. and Pennell, D. J. Cardiovascular Magnetic Resonance, Fibrosis, and Prognosis in Dilated Cardiomyopathy. Journal of the American College of Cardiology 48, 1977-1985, 2006.
Azevedo, P. S., Polegato, B. F., Minicucci, M. F., Paiva, S. A. R. and Zornoff, L. A. M. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arquivos Brasileiros de Cardiologia 106, 62-69, 2016.
Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovascular Research 91, 279-288, 2011.
Barbazuk, W. B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., Bedell, J. A., McPherson, J. D. and Johnson, S. L. The syntenic relationship of the zebrafish and human genomes. Genome Research 10, 1351-1358, 2000.
Begay, R. L., Tharp, C. A., Martin, A., Graw, S. L., Sinagra, G., Miani, D., Sweet, M. E., Slavov, D. B., Stafford, N., Zeller, M. J., Alnefaie, R., Rowland, T. J., Brun, F., Jones, K. L., Gowan, K., Mestroni, L., Garrity, D. M. and Taylor, M. R. G. FLNC Gene Splice Mutations Cause Dilated Cardiomyopathy. Basic to Translational Science 1, 344-359, 2016.
Beis, D., Bartman, T., Jin, S. W., Scott, I. C., Amico, L. A., Ober, E. A., Verkade, H., Frantsve, J., Field, H. A., Wehman, A., Baier, H., Tallafuss, A., Bally, C., Laure, Chen, J. N., Stainier, D. Y. R. and Jungblut, B. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132, 4193, 2005.
Boon, K. L., Xiao, S., McWhorter, M. L., Donn, T., Wolf, S., Emma, Bohnsack, M. T., Moens, C. B. and Beattie, C. E. Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects. Human Molecular Genetics 18, 3615-3625, 2009.
Brigden, W. Uucommon Myocardial Disease the non-coronary cardiomyopathy. The Lancet 270, 1243-1249, 1957.
Brown, D. R., Samsa, L. A., Qian, L. and Liu, J. Advances in the Study of Heart Development and Disease Using Zebrafish. Journal of Cardiovascular Development and Disease 3, 13-38, 2016.
Cecchi, F., Tomberli, B. and Olivotto, I. Clinical and molecular classification of cardiomyopathies. Global Cardiology Science and Practice 2012, 4, 2012.
Chauvet, C., Crespo, K., Ménard, A., Wu, Y., Xiao, C., Blain, M., Roy, J. and Y Deng, A. α-Kinase 2 is a novel candidate gene for inherited hypertension in Dahl rats. Journal of Hypertension 29, 1320-1326, 2011.
Chen, J. N., Eeden, F. J., Warren, K. S., Chin, A., Nusslein, V., C., Haffter, P. and Fishman, M. C. Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373, 1997.
Chen, Y. H., Pai, C. W., Huang, S. W., Chang, S. N., Lin, L. Y., Chiang, F. T., Lin, J. L., Hwang, J. J. and Tsai, C. T. Inactivation of Myosin Binding Protein C Homolog in Zebrafish as a Model for Human Cardiac Hypertrophy and Diastolic Dysfunction. Journal of the American Heart Association 2, e000231, 2013.
Chocron, S., Verhoeven, M. C., Rentzsch, F., Hammerschmidt, M. and Bakkers, J. Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Developmental Biology 305, 577-588, 2007.
Cohn, J. N., Ferrari, R. and Sharpe, N. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Journal of the American College of Cardiology 35, 569-582, 2000.
Dellefave, L. and McNally, E. M. The genetics of dilated cardiomyopathy. Current Opinion in Cardiology 25, 198-204, 2010.
Denvir, M. A., Tucker, C. S. and Mullins, J. J. Systolic and diastolic ventricular function in zebrafish embryos: Influence of norepenephrine, MS-222 and temperature. Biomed Central Genomics Biotechnology 8, 21-28, 2008.
Ding, Y., Long, P. A., Bos, J. M., Shih, Y.-H., Ma, X., Sundsbak, R. S., Chen, J., Jiang, Y., Zhao, L., Hu, X., Wang, J., Shi, Y., Ackerman, M. J., Lin, X., Ekker, S. C., Redfield, M. M., Olson, T. M. and Xu, X. A modifier screen identifies DNAJB6 as a cardiomyopathy susceptibility gene. Journal of Clinical Investigation Insight 2, e94086, 2017.
Dvornikov, A. V., de Tombe, P. P. and Xu, X. Phenotyping cardiomyopathy in adult zebrafish. Progress in Biophysics and Molecular Biology 138, 116-125, 2018.
Eisen, J. S. and Smith, J. C. Controlling morpholino experiments: don't stop making antisense. Development 135, 1735, 2008.
Elliott, P., Andersson, B., Arbustini, E., Bilinska, Z., Cecchi, F., Charron, P., Dubourg, O., Kühl, U., Maisch, B., McKenna, W. J., Monserrat, L., Pankuweit, S., Rapezzi, C., Seferovic, P., Tavazzi, L. and Keren, A. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. European Heart Journal 29, 270-276, 2008.
Giardoglou, P. and Beis, D. On Zebrafish Disease Models and Matters of the Heart. Biomedicines 7, 15, 2019.
Gilbert, M. J. H., Zerulla, T. C. and Tierney, K. B. Zebrafish (Danio rerio) as a model for the study of aging and exercise: Physical ability and trainability decrease with age. Experimental Gerontology 50, 106-113, 2014.
Gu, G., Na, Y., Chung, H., Seok, S. H. and Lee, H. Y. Zebrafish Larvae Model of Dilated Cardiomyopathy Induced by Terfenadine. Korean Circulation Journal 47, 960-969, 2017.
Hein, S. J., Lehmann, L. H., Kossack, M., Juergensen, L., Fuchs, D., Katus, H. A. and Hassel, D. Advanced echocardiography in adult zebrafish reveals delayed recovery of heart function after myocardial cryoinjury. PLoS One 10, e0122665, 2015.
Heineke, J. and Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology 7, 589-600, 2006.
Hershberger, R. E., Hedges, D. J. and Morales, A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nature Reviews Cardiology 10, 531-547, 2013.
Hofsteen, P., Robitaille, A. M., Strash, N., Palpant, N., Moon, R. T., Pabon, L. and Murry, C. E. ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells. iScience 2, 88-100, 2018.
Hsieh, F. C., Lu, Y. F., Liau, I., Chen, C. C., Cheng, C. M., Hsiao, C. D. and Hwang, S. P. L. Zebrafish VCAP1X2 regulates cardiac contractility and proliferation of cardiomyocytes and epicardial cells. Scientific Reports 8, 7856, 2018.
Hu, N., Yost, H. J. and Clark, E. B. Cardiac morphology and blood pressure in the adult zebrafish. The Anatomical Record 264, 1-12, 2001.
Huang, C. C., Su, T. H. and Shih, C. C. High-Resolution Tissue Doppler Imaging of the Zebrafish Heart During Its Regeneration. Zebrafish 12, 48-57, 2014.
Hunter, K. W. and Crawford, N. P. S. The Future of Mouse QTL Mapping to Diagnose Disease in Mice in the Age of Whole-Genome Association Studies. Annual Review of Genetics 42, 131-141, 2008.
Huttner, I. G., Wang, L. W., Santiago, C. F., Horvat, C., Johnson, R., Cheng, D., von Frieling-Salewsky, M., Hillcoat, K., Bemand, T. J. and Trivedi, G. A-Band Titin Truncation in Zebrafish Causes Dilated Cardiomyopathy and Hemodynamic Stress Intolerance. Circulation: Genomic and Precision Medicine 11, e002135, 2018.
Jacoby, D. and McKenna, W. J. Genetics of inherited cardiomyopathy. European Heart Journal 33, 296-304, 2012.
Jean, M. J., Deverteuil, P., Lopez, N. H., Tapia, J. D. and Schoffstall, B. Adult zebrafish hearts efficiently compensate for excessive forced overload cardiac stress with hyperplastic cardiomegaly. Bioresearch Open Access 1, 88-91, 2012.
Jop, H. V., Elrod, J. W., Aronow, B. J., Pu, W. T. and Molkentin, J. D. Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo. Proceedings of the National Academy of Sciences of the United States of America 108, 12331, 2011.
Kehat, I. and Molkentin, J. D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122, 2727-2735, 2010.
Kikuchi, K. Advances in understanding the mechanism of zebrafish heart regeneration. Stem Cell Research 13, 542-555, 2014.
Kuipers, J., Kalicharan, R. D., Wolters, A. H. G., van Ham, T. J. and Giepmans, B. N. G. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain. Journal of Visualized Experiments 111, 53635, 2016.
Le, A. T. and Stainier, D. Y. R. Fibronectin Regulates Epithelial Organization during Myocardial Migration in Zebrafish. Developmental Cell 6, 371-382, 2004.
Le, C., Philippe, Park, H. Y., Carlson, K. M., Marchuk, D. A. and Rockman, H. A. Multiple quantitative trait loci modify the heart failure phenotype in murine cardiomyopathy. Human Molecular Genetics 12, 3097-3107, 2003.
Lee, H. Y., Jeon, E. S., Kang, S. M. and Kim, J. J. Initial Report of the Korean Organ Transplant Registry (KOTRY): Heart Transplantation. Korean Circulation Journal 47, 868-876, 2017.
Leitner, M. G. Zebrafish in auditory research: are fish better than mice? The Journal of Physiology 592, 4611-4612, 2014.
Liew, C. C. and Dzau, V. J. Molecular genetics and genomics of heart failure. Nature Reviews Genetics 5, 811-825, 2004.
Lin, K. Y., Chang, W. T., Lai, Y. C. and Liau, I. Toward Functional Screening of Cardioactive and Cardiotoxic Drugs with Zebrafish in Vivo Using Pseudodynamic Three-Dimensional Imaging. Analytical Chemistry 86, 2213-2220, 2014.
Lin, M. H., Chou, H. C., Chen, Y. F., Liu, W., Lee, C. C., Liu, L. Y. M. and Chuang, Y. J. Development of a rapid and economic in vivo electrocardiogram platform for cardiovascular drug assay and electrophysiology research in adult zebrafish. Scientific Reports 8, 1-12, 2018.
Lu, F. I., Sun, Y. H., Wei, C. Y., Thisse, C. and Thisse, B. Tissue-specific derepression of TCF/LEF controls the activity of the Wnt/β-catenin pathway. Nature Communications 5, 5368, 2014.
Mademont, S. I., Mates, J., Yotti, R., Espinosa, M. A., Pérez, S. A., Fernandez, A. A. I., Coll, M., Méndez, I., Iglesias, A., Olmo, B., Riuró, H., Cuenca, S., Allegue, C., Campuzano, O., Picó, F., Ferrer, C. C., Álvarez, P., Castillo, S., Garcia, P. P., Gonzalez, L. E., Padron, B. L., Díaz, d. B. A., Darnaude, M. T., González, H. J. I., Brugada, J., Fernandez, A. F. and Brugada, R. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLoS One 12, e0181465, 2017.
Maisch, B. Alcoholic cardiomyopathy : The result of dosage and individual predisposition. Herz 41, 484-493, 2016.
Maron, B. J. Sudden Death in Young Athletes. New England Journal of Medicine 349, 1064-1075, 2003.
Maron, B. J. Distinguishing hypertrophic cardiomyopathy from athlete's heart: a clinical problem of increasing magnitude and significance. Heart 91, 1380-1382, 2005.
Maron, B. J., Towbin, J. A., Thiene, G., Antzelevitch, C., Corrado, D., Arnett, D., Moss, A. J., Seidman, C. E. and Young, J. B. Contemporary Definitions and Classification of the Cardiomyopathies. Circulation 113, 1807-1816, 2006.
McNally, E. M. and Mestroni, L. Dilated Cardiomyopathy. Circulation Research 121, 731-748, 2017.
McNally, E. M., Barefield, D. Y. and Puckelwartz, M. J. The genetic landscape of cardiomyopathy and its role in heart failure. Cell Metabolism 21, 174-182, 2015.
Meeker, N. D., Hutchinson, S. A., Ho, L. and Trede, N. S. Method for isolation of PCR-ready genomic DNA from zebrafish tissues. Biotechniques 43, 610-614, 2007.
Mercer, E. J., Lin, Y. F., Cohen, G. L. and Evans, T. Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Developmental Biology 435, 41-55, 2018.
Mestroni, L., Brun, F., Spezzacatene, A., Sinagra, G. and Taylor, M. R. Genetic causes of dilated cardiomyopathy. Progress in Pediatric Cardiology 37, 13-18, 2014.
Miura, G. I. and Yelon, D. A guide to analysis of cardiac phenotypes in the zebrafish embryo. Methods in Cell Biology 101, 161-180, 2011.
Moller, S. and Henriksen, J. H. Cirrhotic cardiomyopathy. Journal of Hepatology 53, 179-190, 2010.
Nagata, Y., Yamagishi, M., Konno, T., Nakanishi, C., Asano, Y., Ito, S., Nakajima, Y., Seguchi, O., Fujino, N., Kawashiri, M. a., Takashima, S., Kitakaze, M. and Hayashi, K. Heart Failure Phenotypes Induced by Knockdown of DAPIT in Zebrafish: A New Insight into Mechanism of Dilated Cardiomyopathy. Scientific Reports 7, 17417, 2017.
Noël, E. S., Verhoeven, M., Lagendijk, A. K., Tessadori, F., Smith, K., Choorapoikayil, S., Hertog, J. and Bakkers, J. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality. Nature Communications 4, 2754, 2013.
Orenes, P. E., Hernández Romero, D., Jover, E., Valdés, M., Lip, G. Y. H. and Marín, F. Impact of polymorphisms in the renin–angiotensin–aldosterone system on hypertrophic cardiomyopathy. Journal of the Renin-Angiotensin-Aldosterone System 12, 521-530, 2011.
Ota, S., Hisano, Y., Muraki, M., Hoshijima, K., Dahlem, T. J., Grunwald, D. J., Okada, Y. and Kawahara, A. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes to Cells 18, 450-458, 2013.
Peterson, S. M. and Freeman, J. L. RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. Journal of Visualized Experiments 30, e1470, 2009.
Poon, K. L. and Brand, T. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Global Cardiology Science and Practice 1, 9-28, 2013.
Rosenfeld, G. E., Mercer, E. J., Mason, C. E. and Evans, T. Small heat shock proteins Hspb7 and Hspb12 regulate early steps of cardiac morphogenesis. Developmental Biology 381, 389-400, 2013.
Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Hölper, S., Krüger, M. and Stainier, D. Y. R. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230-233, 2015.
Scheid, L. M., Mosqueira, M., Hein, S., Kossack, M., Juergensen, L., Mueller, M., Meder, B., Fink, R. H. A., Katus, H. A. and Hassel, D. Essential light chain S195 phosphorylation is required for cardiac adaptation under physical stress. Cardiovascular Research 111, 44-55, 2016.
Seto, S. W., Kiat, H., Lee, S. M. Y., Bensoussan, A., Sun, Y. T., Hoi, M. P. M. and Chang, D. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research. European Journal of Pharmacology 768, 77-86, 2015.
Sligtenhorst, I., Ding, Z. M., Shi, Z. Z., Read, R. W., Hansen, G. and Vogel, P. Cardiomyopathy in α-Kinase 3 (ALPK3)-Deficient Mice. Veterinary Pathology 49, 131-141, 2011.
Suzuki, M., Carlson, K. M., Marchuk, D. A. and Rockman, H. A. Genetic Modifier Loci Affecting Survival and Cardiac Function in Murine Dilated Cardiomyopathy. Circulation 105, 1824-1829, 2002.
Sverrisdóttir, Y. B., Schultz, T., Omerovic, E. and Elam, M. Sympathetic nerve activity in stress-induced cardiomyopathy. Clinical Autonomic Research 22, 259-264, 2012.
Thisse, C. and Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature Protocols 3, 59, 2007.
Toepfer, C. N., Wakimoto, H., Garfinkel, A. C., McDonough, B., Liao, D., Jiang, J., Tai, A. C., Gorham, J. M., Lunde, I. G., Lun, M., Lynch, T. L., McNamara, J. W., Sadayappan, S., Redwood, C. S., Watkins, H. C., Seidman, J. G. and Seidman, C. E. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Science Translational Medicine 11, 1199-1209, 2019.
Triposkiadis, F., Karayannis, G., Giamouzis, G., Skoularigis, J., Louridas, G. and Butler, J. The Sympathetic Nervous System in Heart Failure: Physiology, Pathophysiology, and Clinical Implications. Journal of the American College of Cardiology 54, 1747-1762, 2009.
Wang, L. W., Huttner, I. G., Santiago, C. F., Kesteven, S. H., Yu, Z. Y., Feneley, M. P. and Fatkin, D. Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models. Disease Models and Mechanisms 10, 63-76, 2017.
Ware, J. S. and Cook, S. A. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nature Reviews Cardiology 15, 241-252, 2017.
Watson, C. J. E. and Dark, J. H. Organ transplantation: historical perspective and current practice. British Journal of Anaesthesia 108, 29-42, 2012.
Westerfield, M. General Method for Zebrafish Care. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio Rerio). University of Oregon Press, Eugene, 13-27, 2000.
Wheeler, F. C., Fernandez, L., M, C. K., Wolf, M., A, R. H. and Marchuk, D. QTL mapping in a mouse model of cardiomyopathy reveals an ancestral modifier allele affecting heart function and survival. Mammalian Genome 16, 414-423, 2005.
Yacoub, M. H. Cardiomyopathy on the move. Nature Reviews Cardiology 11, 628-629, 2014.
Yelon, D. Cardiac patterning and morphogenesis in zebrafish. Developmental Dynamics 222, 552-563, 2001.
Zhang, W., Chen, H., Qu, X., Chang, C. P. and Shou, W. Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). American Journal of Medical Genetics. Part C, Seminars in Medical Genetics 163, 144-156, 2013.