| 研究生: |
陳培展 Chen, Pei-Jarn |
|---|---|
| 論文名稱: |
新型超音波技術應用於人體骨頭組織之量化評估 Quantitative Assessment of Human Bone Tissue by Novel Ultrasound Techniques |
| 指導教授: |
陳天送
Chen, Tainsong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 分頻處理 、速度散度大小 、速度散度 、聲波波速 、超音波 、脛骨 、腳跟骨 |
| 外文關鍵詞: | Tibia, Ultrasound, Acoustic speed, Calcaneus, Velocity dispersion, Velocity dispersion magnitude (VDM), Split-spectrum processing (SSP). |
| 相關次數: | 點閱:130 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前臨床上常用雙能X光吸收儀(DEXA)量取所謂骨密度作為骨質疏鬆症之診斷參考,然而近年來亦有研究指出:超音波的波速和波衰減亦能顯示骨頭品質之特性,例如微細結構、彈性係數、密度等,另外由於超音波不具有輻射的疑慮且具價格低廉之特性,使得超音波骨密度儀成為骨質疏鬆症的另一評估工具。上述超音波波速及波衰減的量測均需骨頭厚度的資訊,然而人體骨頭的真正厚度在傳統量測技術上是無法直接獲得,因此如何發展一種較新的技術來獲取上述之參數,將是發展超音波骨密度儀的一項重要課題。
本論文首先提出兩種新型之超音波技術,一種為利用兩個超音波換能器,放置於人體脛骨同ㄧ側,一個作為發射與接收超音波訊號,另外一個只設定為接收超音波訊號之雙探頭技術。如此一來不用事先知道人體脛骨真正厚度,只需知道兩個探頭所量到訊號的飛行時間及兩個探頭間之距離,即可求得人體脛骨之聲波波速。結果顯示,利用本技術進行18位門診病人之聲波波速與DEXA所量取之骨密度間之相關性高達0.93。另外,第二種技術為把兩個超音波換能器放置於人體腳跟骨之兩側,然後分別依序進行穿透與反射模式之雙侧探頭技術。這種技術一樣的只需知道各個訊號穿透及反射腳跟骨之時間,而不必知道腳跟骨之實際厚度即可求得人體腳跟骨之聲波波速。利用這種技術進行骨頭假體之測試除了顯示了非常高的準確度(>99 %)及低的共變異數(<0.5%)外,同時對14位健康個體之腳跟骨的量測結果,亦在本論文中報告。
骨頭組織另外一個重要之課題為波速散度,由於波速在骨頭中為頻率函數,因此波速散度大小(VDM)可能傳達評估骨質疏鬆症中所需骨頭機械特性之訊息。傳統上波速散度大小之量測需要由多個不同頻率之超音波脈波獲取,本論文提出所謂時域之分頻處理(SSP)技術把一個寬頻的超音波脈波訊號分解成一序列之窄頻脈波訊號,接著分別處理入射及穿透的寬頻脈波的分頻測量就可以得到VDM。利用此SSP技術所測得之VDM與預設參數之模擬超音波訊號,除有具有很高之ㄧ致性外;另外利用三個不同中心頻率的換能器對兩個不同之超音波商用腳跟骨假體測量所得到的VDM,也顯示了很好之結果。同時利用此技術量測9個活體腳跟骨VDM 之結果亦在本論文中報告。
綜合言之,本論文所提出三種新型超音波技術,都是非常簡單而且直接之方法,最後結果也顯示這些技術應用於臨床骨質疏鬆症的評估應該具有很大之潛力。
The Dual Energy X-ray Absorptiometry (DEXA) is commonly used to measure the bone mineral density (BMD) for osteoporosis assessment. Recently, some researchers reported that the acoustic speed and attenuation of ultrasound waves on bone tissue may convey more information of bone quality, such as, microstructure, elasticity, density etc., to predict the bone fracture. Therefore, the ultrasound densitometry has become an alternative way for osteoporosis assessment with no X-ray exposure concerns and low cost. However, the acoustic speed and attenuation measurements are highly dependent on the information of bone thickness which is not available on traditional approaches. Therefore, how to develop a novel technique to obtain above ultrasonic parameters has become an important issue on ultrasound densitometry development.
Two novel ultrasound techniques are proposed in this dissertation. The dual-transducer technique utilizes two transducers placed on the same side of tibia; one for transmitter and receiver, the other one for receiver only. The acoustic speed of tibia shaft can be estimated from the information of time-of-flight on both transducers and the separation distance between the transducer pair without the knowledge of tibia thickness. The measurements from 18 outpatients show a high correlation (r = 0.93) with the measurements of BMD from DEXA. In addition, the two-sided interrogation technique was used two transducers placed both sides of calcaneus. Those transducers are operated at echo mode and transmission mode, respectively. Then, the acoustic speed of bone tissue on calcaneus can be obtained without the information of bone tissue thickness. High accuracy (> 99%) and low standard deviation (<0.5 %) are shown on the bone phantoms measurements. The measurements of 14 healthy subjects are also reported.
Another important issue is the dispersion of bone tissue. The acoustic speed is a function of frequency. The velocity dispersion magnitude (VDM) may convey more information of bone mechanical properties to osteoporosis evaluation. The traditional approaches need several measurements with different frequency ultrasound pulses. In this dissertation, the time domain split spectrum processing (SSP) technique is used to decompose the broadband ultrasound pulse into a serial narrowband pulses with different frequencies. Then, the VDM can be obtained from the processing of the incident ultrasound pulse and the transmitted pulse with one broadband pulse interrogation. The VDM evaluated by SSP technique are consistent with the simulation on model-based signals. In addition, The VDM measurements of two commercial calcaneus phantoms are agreeable to the results measured by three transducers with different central frequency. The estimation of velocity dispersion on 9 human heels were also reported.
In summary, the proposed three novel ultrasound techniques are fairly simple and straightforward methods. The results reveal that the proposed techniques have potential on clinical applications for osteoporosis assessments.
REFERENCE
1. T. A. Einhorn, “The bone organ system: form and function,” San Diego, Academic Press, pp. 3-21,1996.
2. R. Baron, “Anatomy and ultrasound of bone,” Raven Press, 2nd edition, pp. 3-8, 1993.
3. A. M. Parfitt, “Remodelling : relationship to the amount and structure of bone, and the pathogenesis and prevention of fracture,” New York, Raven Press, pp. 45-93, 1988.
4. T. Gillespie and M. P. Gillespy, “Osteoporosis,” Radiol. Clin. N. Am., vol. 29, pp. 77-84, 1991.
5. J. A. Kanis, L. J. Melton, C. Christiansen, C. C. Johnston, and N. Khaltaev, “The diagnosis of osteoporosis,” J. Bone Miner Res., vol. 9, no. 8, pp. 1137-1141, 1994.
6. Worth Health Organization, “Assessment of fracture risk and its application to screening for postmenopausal osteoporosis,” Techniques Report Series, WHO, 1994.
7. http://www.nof.org/
8. http://www.doh.gov.tw/
9. P. Tothill, “Methods of bone mineral measurement,” Phy. Med. Bio., vol. 24, no. 5,, pp. 534-572, 1989.
10. S. Cheng, “Calcaneal bone mineral density predicts fracture occurrence: a five-year follow-up study in elderly people,” J. Bone Miner Res., vol. 12, no. 7, pp. 1075-1082, 1997.
11. C. E. Laset, “Hip fracture prediction in elderly men and women: validation in the Rotterdom study,” J. Bone Miner Res., vol. 13, no. 10, pp. 1587-1593, 1998.
12. R. I. Price, “Ultradistal and cortical forearm bone density in the assessment of postmenopausal bone loss and nonaxial fracture,” J. Bone Miner Res., vol. 4, no. 2, pp. 149-155, 1989.
13. C. C. Gluer, C. Y. Wu, and H. K. Genant, “Broadband ultrasound attenuation signals depend on trabecular orientation: an in vitro study,” Osteoporosis Int., vol. 3, no. 4, pp. 185-191, 1993.
14. D. E. Goldman, and T. F. Heuter, “Tabular data of the velocity absorption of high frequency sound in mammalian tissue,” J. Acoust. Soc. Am., vol. 28, pp. 35-37, 1956.
15. F. J. Fry, and J. E. Barger, “Acoustical properties of the human skull bone,” J. Acoust. Soc. Am., vol. 63, pp. 1576-1590, 1978.
16. B. Martin, and J. H. Mcelhancy, “The acoustic properties of human skull bone,” J. Biomed. Mater. Res., vol. 5, pp. 325-333, 1971.
17. S. H. Prins, H. L. Jorgensen, L. V. Jorgenson, and C. Hassager, “The role of quantitative ultrasound in the assessment of bone: a review,” Clin. Physiol., vol. 18, pp. 3-17, 1998.
18. M. A. Breazeale, J. H. Cantrell, and J. S. Heyman, “Ultrasound wave velocity and attenuation measurement,” Metods Exp. Phys., vol. 19, pp. 67-135, 1981.
19. J. A. Zagzebski, P. J. Rossman, C. Mesina, R. B. Mazess, and E. L. Madsen, “Ultrasound transmission measurement through the os calcis,” Calcif. Tisssue. Int., vol. 49, pp. 107-111, 1991.
20. P. H. Nicholson, G. Lowest, C. M. Langton, and P. G. Van Der, “A comparison of the time-domain and frequency-domain approaches to ultrasonic velocity measurement in trabecular bone,” Phys. Med. Biol. vol. 41, pp. 2421-2435, 1996.
21. H. Jeong, and D. K. Hsu, “Experimental analysis of porosity-induced ultrasound attenuation and velocity change in carbon composites,” Ultrasound, vol. 33, pp. 195-203, 1995.
22. R. Strelitizki, and J. A. Evans, “On the measurement of the velocity of ultrasound in the os calcis using short pulse,” European J. Ultrasound, vol. 4, pp. 295-213, 1996.
23. P. Droin, G. Berger, and P. Laugier, “Velocity dispersion of acoustic waves in cancellous bone,” IEEE Trans. Ultrason., Ferroelect., Contr., vol. 45, no.3, pp. 581-592, 1998.
24. P. P. Antich, and S. Mehta,“Ultrasound critical-angle reflectometry (UCR): a new modality for functional elastometric imaging,” Phys. Med. Biol., vol. 42,pp. 1763-1777, 1997.
25. B. K. Hoffmeister, S. A. Whitten, and J. Y. Rho, “Low-megahertz ultrasonic properties of bovine cancellous bone,” Bone, vol. 26, pp. 635-642, 2000.
26. K. A. Wear, and B. S. Garra, “ Assessment of bone density using ultrasonic backscattering,” Ultrasound Med. Biol., vol.24, no.5, pp. 689-695, 1998.
27. K. Kitamur, H. Nishikouri, S. Ueha, S. Kimura, and N. Ohtomo,“Estimation the trabecular bone axis for characterization of cancellous bone using scattered ultrasonic wave,” Jpn. J. Appl. Phys., vol. 37, pp. 3082-3087, 1998.
28. R. B. Ashman, J. D. Corin, and C. H. Turner,“Elastic properties of cancellous bone: measurement by an ultrasound techniques,” J. Biomech. ,vol.20, pp. 979-986, 1987.
29. C. H. Turner, and M. Eich, “ Ultrasounic velocity as predictor of strength in bovine cancellous bone,” Calcif. Tissue Int., vol. 49, pp. 116-119, 1991.
30. R. Hodgskinson, C. F. Njeh, J. D. Curry, and C. M. Langton,“The ability of ultrasound to predict the stiffness of cancellous bone in vitro,” Bone, vol. 21, pp. 183-190, 1997.
31. C. F. Njeh, C. W. Kuo, C. M. Langton, H. I. Atrah, and C. M. Boivin, “Prediction of human femoral bone strength using ultrasound velocity and BMD : an in vitro study,” Osteoporos Int., vol. 7, pp. 471-477, 1997.
32. C. F. Njeh, R. Hodgskinson, J. D. Currey, and C. M. Langton, “Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone,” Med. Eng. Phys., vol. 18, pp. 373-381,1996.
33. M. B. Takakoli, and J. A. Evans, “Dependence of the velocity and attenuation of ultrasound in bone on the mineral content,” Phys. Med. Biol., vol. 36, pp. 1529-1537, 1991.
34. M. B. Takakoli, and J. A. Evans, “The effect of bone structure on ultrasonic attenuation and velocity,” Ultrasound, vol. 30, pp. 389-395, 1992.
35. K. A. Wear, “Measurements of phase velocity and group velocity in human calcaneus,” Ultra. Med. Biol., vol. 26, no. 4, pp. 641-646, 2000.
36. D. Hans, P.D. Molna, A. M. Schott, L. Sebert , P. O. Cormer, P. O. Kottzki, P.D. Delmas, J. M. Pouilles, G. Breart, and P. J. Meunier, “Ultrasonographic heel measurements to predict hip fracture in elder women: The EPIDOS prospective study,” Lancet, vol.348, pp. 511-514, 1996.
37. B. Drozdzowaka, and W. Pluskiewicz, “The ability of quantitative ultrasound at the calcaneus to identify postmenopausal women with different types of nontraumatic fracture,” Ultrasound Med Biol, vol.28, pp. 1491-1497, 2002.
38. A. J. Foldes, A. Rimon, D. D. Keinan, and M. M. Popovtzer, “Quantitative ultrasound of the tibia: A novel approach for assessment of bone status,” Bone, vol. 17, n0. 4, pp. 363-367, 1995.
39. A. Stewart, and D. M. Reid, “Precision of quantitative ultrasound : comparison of three commercial scanners,” Bone, vol. 27, no. 1, pp. 139-143, 2000.
40. A. Johansen, and M. D. Stone, “The effect of angle edema on bone ultrasound assessment of the heel,” Osteoporosis Int., vol. 7, pp. 44-47, 1997.
41. P. He and J. Zheng. “Acoustic dispersion and attenuation measurement using both transmitted and reflected pulses,” Ultrasonics, vol. 39, pp.27-32, 2001
42. B. Zhao, O. A. Basir and G. S. Mittal, “Estimation of ultrasound attenuation and dispersion using short time Fourier transform,” Ultrasonics, vol. 43 , pp. 7-32, 2005
43. K. M. Prestwood, and A. M. Kenny, “Osteoporosis: pathogenesis, diagnosis, and treatment in older adults,” Clin. in Ger. Med., vol. 14, no. 3, pp. 577-599, 1998.
44. R. M. Francis, “Osteoporosis Pathogenesis and management,” Kluwer Academic Publishers, Dordrecht., pp. 54, 1990.
45. J. C. Rice, C. S. Cowin, and A. J. Bowman, “On the dependence of the elasticity and strength of cancellous bone on apparent density,” J Biomech., vol. 21, pp. 155-168, 1988.
46. L. Mosekilde, “Sex difference in age-related loss of vertebral trabecular bone mass and structure,” Bone vol.10, pp. 425-432, 1989.
47. L. H. Sim, and T. Doorn, “Radiographic measurement of bone mineral: reviewing dual-energy X-ray absorptiometry,” Phys. Eng. Sci. Med., vol.18, pp. 65-80, 1995.
48. P. Lang, P. Steiger, and K. Faulkner, “Current Techniques and recent developments in quantitative bone densitometry,” Radiol. Clin. N. Am., vol. 29, pp. 49-76, 1991.
49. S. J. Ostlere, and R. H. Gold, “Osteoporosis and bone density measurement methods,” Clin. Orthop., vol. 271, pp. 149-163, 1991.
50. M. Alves, W. Xu, and D. Kin, “Ultrasonic assessment of human and bovine trabecular bone :A comparison study,” IEEE. Trans. Biomed. Eng., vol. 43, pp. 249-258, 1996
51. S. Gnudi, N. Malavolta, C. Ripamonti, and R. Caudarella, “Ultrasound in the evaluation of osteoporosis : A comparison with bone mineral density at distal radius,” Brit. J. Radiol., vol. 68, pp. 476-80, 1995.
52. J. F. Greenleaf, “Tissue characterization with ultrasound,” Boca Raton FL., CRC Press, 1986.
53. J. Y. Ophir, and Y. Yazdi, “A transaxial compression techniques (TACT) for localized pulse-echo estimation of sound speed in biological tissue,” Ultrasonic Imaging, vol.12, pp. 35-46, 1990.
54. T. Kontonassios, and J. Y. O’phir, “Variance reduction of speed of sound estimation in tissue using beam tracking methods,” IEEE Trans. Ultrason. Ferroel. Contr., vol. 34, no. 2, pp. 524-530, 1987.
55. J. J. Kaufman, and T. A. Eiborn, “Perspective: Ultrasound assessment of bone,” Miner. Res., vol. 8, pp. 517-525, 1993.
56. C. F. Njeh, C. M. Boivin, and C. M. Langton, “The role of ultrasound in the assessment of osteoporosis: A review,” Osteoporosis Int., vol. 7, pp. 7-22, 1997.
57. P. D. Miller, “Controversies in bone mineral density diagnostic classifications,” Calcif. Tissue Int., vol. 66, pp. 317-19, 2000.
58. C. F. Njeh, I. Saeed, M. Grigonrian, D. J. Kendler, B. Fan, J. Sherherd, M. McClung, W. M. Drake, and H. K. Genant, “Assessment of bone status using speed of sound at multiple anatomical sites,” Ultrasound Med. Biol., vol. 27, pp. 1337-1345, 2001.
59. B. Drozdzowska, and W. Pluskiewics, “Quantitative ultrasound at the calcaneus in premenopausal women and their postmenopausal mothers,” Bone, vol. 1, pp. 79-83, 2001.
60. J. Javaid, P. Pitt, and C. Moniz, “Bone mineral density of pattella and its relation to lumbar spine,” Osteoporosis Int., vol. 2, pp. 662-663,1990.
61. C. Wuster, C, Schidt, and M. Bergman M, “Bone density measurement of calcaneus with ultrasound: A new precision procedure with good agreement to vertebral measurement,” Osteoporosis Int., vol. 1, pp. 237-242, 1992.
62. R. Strelitzki, and J. G. Truscott, “An evaluation of the reproducibility and responsiveness of four state-of-the-art ultrasound heel bone measurement system using phantoms,” Osteoporosis Int., vol. 8, pp. 104-109, 1998.
63. A. Simkin, “Ultrasonic velocity along the tibia shaft as a diagnostic tool for osteoporosis and a prediction of hip fractures,” Myriad Ultrasound System Ltd. Technical report, pp. 1-7, 1993.
64. I. Y. Kuo, B. Hete, and K. K. Shung, “A novel method for the measurement of acoustic speed,” J Acoust. Soc. Am., vol. 88,pp. 1679-82, 1990.
65. N. Hayashi, N. Tamaki, and M. Senda, “A new method of measuring in vivo sound speed in reflection mode,” J. Clin. Ultrasound, vol.16, pp. 87-93, 1988.
66. D. J. Haumschide, and J. F. Greenleaf, “A cross-beam method for ultrasonic speed measurement in tissue (Abst.),” Ultrasonic Imaging, vol. 5, pp. 168, 1983.
67. E. W. Gregg, A. M. Kriska, and L. M. Salamone, “The epidemiology of quantitative ultrasound: A review of the relationships with bone mass, osteoporosis and fracture risk,” Osteoporosis Int., vol. 7, pp.88-99, 1997.
68. D. Marshall, O. Johnell, and H. Weddel, “Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporosis fracture,” Br. Med J., vol.312, pp. 1254-1259, 1996.
69. M. L. Funke, L. Kopka, and R. Vosshenrich, “Broadband ultrasound attenuation in the diagnosis of osteoporosis: Correlation with osteodensitometry and fracture,” Radiology, vol.194, pp. 77-81, 1995.
70. S. M. F. Pluijm, W. C. Graafmans, L. M. Bouter, and M. Lips, “Ultrasound measurements for the prediction of osteoporostic fractures in elderly people,” Osteoporos Int., vol. 9, pp. 550-560, 1999.
71. W. Pluskiewicz, and B. Drozdzowska, “Ultrasound measurement of the calcaneus in Polish normal and osteoporotic women and men,” Bone, vol. 24, pp. 611-617, 1999a.
72. W. Pluskiewicz, and B. Drozdzowska, “Ultrasound measurement at the calcaneus in men: Differences between healthy and fractured persons and the influence of age and anthropometric features on ultrasound parameters,” Osteoporos Int.,vol. 24, pp.611-617, 1999b.
73. A. M. Scott, S. Weill-Enngerer, and D. Hans, “Ultrasound discriminates patients with hip fracture equally well as dual energy X-ray densitometry and independence of bone mineral density,” J. Bone Miner. Res., vol. 10, pp. 243-249, 1995.
74. A. Stewart, D. M. Reid, and R. W. Porter, “Broadband ultrasound attenuation and dual-energy X-ray absorptiometry in patients with hip fracture: Which techniques discriminates fracture risk,” Calcif. Tissue Int., vol. 54, pp.466-469, 1994.
75. L. M. Frost, G. M. Blake, and I. Fogelman, “Contact quantitative ultrasound: An evaluation of precision, fracture discrimination, age-related bone loss and applicability of the WHO criteria,” Osteoporosis Int., vol.10, pp. 441-449, 1999.
76. P. Ross, C. Huang, and J. Davis, “Predicting vertebral deformity using bone densitometry at various skeletal sites and calcaneus ultrasound,” Bone, vol.16, pp.
77. J. M. Vogel, R. D. Wasnich, and P. D. Ross, “The clinical relevance of calcaneus bone mineral measurement: a review,” J Bone Miner Res., vol. 5, pp. 35-58, 1988.
78. R. D. Wasnich, P. D. Ross, and L. K. Heibrun, “Selection of the optimal skeletal site for fracture prediction,” Clin. Orthop. vol. 216, pp. 262-269, 1987
79. D. M. Black, S. R. Cummings, and H. K. Genantl, “Axial and appendicular bone density predict fractures in older women,” J Bone Miner Res., vol.7, pp.633-638, 1992.
80. K. D. Häulser, P. A. Rich, and P. A. Barry, “Water bath and contact methods in ultrasonic evaluation of bone,” Calcif Tissue Int., vol. 61, pp. 26-29, 1997.
81. G. Brandenburger, K. Waud and D. Baran D, “The importance of couple-path correction for velocity measurements of the heel,” IEEE Ultrasonic symposium, pp. 1087-91, 1992.
82. C. Chappard, E. Camus, F. Lefebvre, G. Guillot, J. Bittoun, G. Berger and P. Laugier, “Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue,” J Clin. Densitom., vol. 3, no. 2, pp. 121-31, 2000.
83. D. Hans, P. D. Molna, A. M. Schott, L. Sebert, P. O. Cormer, P. O. Kottzki, P. D. Delmas, J. M. Pouilles, G. Breart, and P. J. Meunier, “Ultrasonographic heel measurements to predict hip fracture in elder women: The EPIDOS prospective study,” Lancet, vol.348, pp. 511-514, 1996
84. K. A. Wear, “Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz,” IEEE Trans. Ultrson. Ferro. Freq. Cont., vol. 48, pp. 602-608, 2001.
85. P. He, “Acoustic attenuation estimation for soft tissue from ultrasound echo envelope peak,” IEEE Trans. Ultrason. Ferro. Freq. Control., vol. 36, no. 2, pp. 197-203, 1989
86. P. H. F. Nicholson, G. Lowest, X. G. Cheng, S. Boonen, V. D. Perre, and J. Dequeker, “Assessment of the strength of the proximal femur in vitro: Relationship with ultrasonic measurements of the calcaneus,” Bon, vol. 20, pp. 219-224, 1997.
87. K. A. Wear, “The effects of frequency –dependent attenuation and dispersion on sound speed measurements: Application in human trabecular bone,” IEEE Ultrason. Ferroelec. Freq. Cont., vol.47, no. 1, pp. 265-273, 1998.
88. P. He, “Simulation of ultrasound pulse propagation in lossy media obeying a frequency power law,” IEEE Ultrason. Ferroelec. Freq. Cont., vol. 45, pp. 114-26, 1998.
89. R. Strelitzki, A. J. Clarke, and J. A. Evans, “The measurement of the velocity of ultrasound in fixed trabecular bone using broagband pulse and single-frequency tone burst,” Phys. Med. Biol., vol. 4, pp. 205-213, 1996.
90. P. He and J. Zheng, “Acoustic dispersion and attenuation measurement using both transmitted and reflected pulses,” Ultrasound, vol. 30, pp. 27-32, 2001.
91. F. Peter and L. Petit, “A broad band spectroscopy method for ultrasound wave velocity and attenuation measurement in dispersive media,” Ultrasonics, vol. 41, pp. 357-363, 2003.
92. K. A. Wear, “A numerical method to predict the effects of frequency dependent attenuation and dispersion on speed of sound estimates in cancellous bone,” J. Acoust. Soc. Am., vol. 109, no. 3, pp. 1213-1218, 2001.
93. S. Pal, S. Saha, and G. N. Reddy, “Frequency dependence of ultrasonic characteristic of cancellous bone,” in Biomedical Engineering, London, Pergamon, p.352, 1982.
93. P. Karpur, P. M. Shankar, J. L. Rose, and V. L. Newhouse, “Split spectrum processing: optimising the processing parameters using minimization,” Ultrasounics, vol. 25, pp. 204-208, 1987.
94. X. Li, N. M. Bilgutay, and R. Murthy, “Spectral histogram using the minimization algorithm theory and application to flaw detection,” IEEE Ultrason. Ferroelec. Freq. Cont., vol. 39, no. 2, pp. 279-284, 1992.
95. J. Xin, K. D. Donohue, and N. M. Bilgutay, “Frequency-diverse geometric and arithmetic mean filtering for ultrasonic flaw detection,” Mat. Eval., pp. 987-992, 1991.
96. C. C. Lee, M. Lahham, and B. G. Martiin, “Experimental verification of the Kram-Krong relationship for acoustic waves,” IEEE Ultrason. Ferroelec. Freq. Cont., vol. 37, pp. 286-294, 1990.
97. M. O’Donell, E. T. Jaynes, and J. G. Miller, “Kramers-Krong relationship between ultrasonic attenuation and phase velocity,” J. Acoust. Soc. Am., vol. 69, pp. 696-701, 1981.
98. D. Hans, M. Arlot, and M. E. Schott, “Do ultrasound measurements on os calcis reflect more the bone microarchitectute than bone mass? ” Bone, vol. 16, pp. 295-300, 1995.
99. C. M. Langton, M. A. Whitehead, T. J. Haire, and R. Hodgskinson, “Fractural dimension predicts broadband ultrasound attenuation in stereolithograpgy models of cancellous bone,” Phys. Med. Biol., vol. 43, pp. 467-471, 1998.
100. M. L. Mackelvie, and S. B. Palmer, “The interaction of ultrasound with cancellous bone,” Phys. Med. Biol., vol. 36, pp. 1331-1340, 1991.
101. P. H. Nicholson, R. Muller, and G. Lowest, “Do quantitative ultrasound measurements reflect structure indendent of density in human vertebral cancellous bone?” Bone, vol. 23, pp. 425-431, 1998.
102. J. Y. Rho, D. Flaitz, V. Swarnakar, and R.S. Acharya, “The characterization of broadband ultrasound attenuation and fractal analysis by biomechanical properties,” Bone, vol. 20, pp. 497-504, 1997.
103. R. Strelizki, J. A. Evans, and A. J. Clarke, “The influence of porosity and pore size on the ultrasound properties of bone investigated using a phantom material,” Osteoporosis Int., vol. 7, pp. 370-375, 1997.
104. C. C. Gluer, C. Y. Wu, M. Jergas, A. Goldstein, and H. K. Genant, “Three quantitative ultrasound parameters reflect bone structure,” Calcif. Tisue Int., vol. 55, pp. 46-52, 1994.
105. K. A. Wear, “Assessment of bone density using ultrasonic backscatter,” Ultrasound Med. Bio., vol. 24, pp. 689-695, 1998.
106. S. Chaffai, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, and P. Laugier, “Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationship to density and microstructure,” Bone, vol. 30, No. 1, pp. 229-237, 2002.