| 研究生: |
黎安雅 Artya Lathifah |
|---|---|
| 論文名稱: |
需求不確定下接單生產系統之廢棄物回收與訂購決策之研究 Waste recycling and ordering decisions in a make-to-order system under uncertain demand |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 風險管理 、需求不確定性 、回收和再利用 、接單生產 、加急訂單 |
| 外文關鍵詞: | demand uncertainty, expedited order, make-to-order, recycling and reuse, risk management |
| 相關次數: | 點閱:152 下載:29 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究深入探討了單期接單生產系統中的情境,該系統涉及兩項產品(產品1和產品2),兩者分別擁有著嚴格和寬鬆的技術規格。這兩種產品共用相同類型的原材料,透過相同的生產過程進行加工。然而,由於品質上的差異,我們能夠從供應商處購買新材料,以供應兩種產品的製造需求,同時也能將已使用過的材料轉化為回收材料,並在產品2的生產過程中予以應用。本研究以最小化預期總成本為目標,藉由數值分析和模擬方法,深入分析了製造商在新材料的常規訂購、緊急訂購,以及生產過程中廢棄物再利用等方面的決策,這些決策協同降低了因需求和供應不匹配而帶來的風險。在外生回收率情境下,回收物再利用能夠在風險緩解方面補足對新材料的常規訂購。尤其在單位加急訂購成本相對較高且持續上升的情況下,有助於降低製造商的預期總成本。而透過平衡常規訂購數量與回收努力,研究以內生回收方式進行的廢物再利用,我們發現能夠在最小化加急訂購費用的前提下達成兩大目標。此外,研究發現常規訂購數量通常與生產過程中所使用的回收材料數量呈反比例關係,隨著單位加急訂購成本的變動和其他模型參數的變化,回收努力與回收材料數量之間的關係呈現反比例變化,而在其他模型參數變動時,單位加急訂購成本與回收材料數量成正比例變化。因此,研究得出以下結論,當製造商希望專注於其主要業務時,將回收過程外包給成本效益更高的專業回收廠商,將使製造商在回收廠商的成本效益明顯時實現最低成本。最後,我們根據數值分析的結果,提出了一些管理上的見解,進一步對論文內容進行歸納和探討。
This study examines a single-period make-to-order system in which manufacturers produce two products with tighter and looser specifications. The production of these two products uses the same material type in a common process. Due to differences in quality, new materials can be utilized in producing both products, from which spent materials can be converted into recycled materials and used to produce product 2. Based on expected total cost minimization, analytical and numerical analyses are used to investigate the manufacturer’s decisions regarding regular orders for new materials and regarding reusing the manufacturing waste that jointly mitigate the risk of demand-and-supply mismatch. With an exogenous recycling rate, waste reuse can complement the regular order for new materials in risk mitigation while reducing the manufacturer’s expected total cost when the unit expedited ordering cost increases. By balancing the regular order quantity and the recycling effort, waste reuse with endogenous recycling enables the achievement of both objectives even when the expedited ordering cost is small. In addition, the regular order quantity is inversely proportional to the quantity of recycled materials used in production. Interestingly, the recycling effort is inversely proportional to the recycled materials as the unit expedited ordering cost varies and increases when the defective unit cost is small and recycled materials’ processing capabilities are improved. Finally, outsourcing the recycling process to a specialized recycler with higher cost efficiency will make the manufacturer achieve the minimum expected total cost when the recycling cost is significantly low.
Agrawal, S., Singh, R. K., & Murtaza, Q. (2015). A literature review and perspectives in reverse logistics. Resources, Conservation and Recycling, 97, 76-92.
Baiman, S., Fischer, P. E., & Rajan, M. V. (2000). Information, contracting, and quality costs. Management Science, 46(6), 776-789.
Balachandran, K. R., & Radhakrishnan, S. (2005). Quality implications of warranties in a supply chain. Management Science, 51(8), 1266-1277.
BMU. (2018). Waste Management in Germany 2018. Retrieved May 4, 2023 from https://www.bmuv.de/en/download/report-of-the-federal-republic-of-germany-for-the-sixth-review-meeting-in-may-2018
Cárcamo, E. A. B., & Peñabaena-Niebles, R. (2022). Opportunities and challenges for the waste management in emerging and frontier countries through industrial symbiosis. Journal of Cleaner Production, 132607.
Cao, X., Wen, Z., Zhao, X., Wang, Y., & Zhang, H. (2020). Quantitative assessment of energy conservation and emission reduction effects of nationwide industrial symbiosis in China. Science of the Total Environment, 717, 137114.
Chen, Y.-J., & Chien, C.-F. (2018). An empirical study of demand forecasting of non-volatile memory for smart production of semiconductor manufacturing. International Journal of Production Research, 56(13), 4629-4643.
Chen, Z., & Xie, G. (2022). ESG disclosure and financial performance: Moderating role of ESG investors. International Review of Financial Analysis, 83, 102291.
Chertow, M. R. (2000). Industrial symbiosis: literature and taxonomy. Annual Review of Energy and the Environment, 25(1), 313-337.
Choi, D.-W., Hwang, H., & Koh, S.-G. (2007). A generalized ordering and recovery policy for reusable items. European Journal of Operational Research, 182(2), 764-774.
Chu, X., Zhong, Q., & Li, X. (2018). Reverse channel selection decisions with a joint third-party recycler. International Journal of Production Research, 56(18), 5969-5981.
Circular Taiwan Network. (2023). An Innovative Solution for Circular Economy∣The Recycling of Developer. Circular Taiwan. Retrieved June 5, 2023 from https://circular-taiwan.org/en/case/sanfuchemical/
da Costa, F. P., da Silva Morais, C. R., & Rodrigues, A. M. (2020). Sustainable glass-ceramic foams manufactured from waste glass bottles and bentonite. Ceramics International, 46(11), 17957-17961.
De Giovanni, P., & Zaccour, G. (2022). A selective survey of game-theoretic models of closed-loop supply chains. Annals of Operations Research, 314(1), 77-116.
Dobos, I., & Richter, K. (2004). An extended production/recycling model with stationary demand and return rates. International Journal of Production Economics, 90(3), 311-323.
Dowlatshahi*, S. (2005). A strategic framework for the design and implementation of remanufacturing operations in reverse logistics. International Journal of Production Research, 43(16), 3455-3480.
Ecology, U. S. (2021). Spent NMP distilled and redistributed. Retrieved May 10, 2023 from https://www.usecology.com/services/recycling/nmp-recycling
El Saadany, A. M., & Jaber, M. Y. (2008). The EOQ repair and waste disposal model with switching costs. Computers & Industrial Engineering, 55(1), 219-233.
El Saadany, A. M., Jaber, M. Y., & Bonney, M. (2013). How many times to remanufacture? International Journal of Production Economics, 143(2), 598-604.
EPA Taiwan. (2020). Solid Waste Statistics. Retrieved April, 20 from https://www.epa.gov.tw/eng/513B0B39D090DE4C
European Commission. (2017). Waste from Electrical and Electronic Equipment (WEEE). Retrieved May 5, 2023 from https://environment.ec.europa.eu/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en
Ferrer, G. (2003). Yield information and supplier responsiveness in remanufacturing operations. European Journal of Operational Research, 149(3), 540-556.
Ferrer, G., & Swaminathan, J. M. (2010). Managing new and differentiated remanufactured products. European Journal of Operational Research, 203(2), 370-379.
Fisher, L. V., & Barron, A. R. (2019). The recycling and reuse of steelmaking slags—A review. Resources, Conservation and Recycling, 146, 244-255.
García-Barragán, J. F., Eyckmans, J., & Rousseau, S. (2019). Defining and measuring the circular economy: a mathematical approach. Ecological Economics, 157, 369-372.
Gökbayrak, E., & Kayış, E. (2023). Single item periodic review inventory control with sales dependent stochastic return flows. International Journal of Production Economics, 255, 108699.
Gouveia, P. F., Schabbach, L., Souza, J., Henriques, B., Labrincha, J., Silva, F., Fredel, M., & Mesquita-Guimarães, J. (2017). New perspectives for recycling dental zirconia waste resulting from CAD/CAM manufacturing process. Journal of Cleaner Production, 152, 454-463.
Govindan, K., & Hasanagic, M. (2018). A systematic review on drivers, barriers, and practices towards circular economy: a supply chain perspective. International Journal of Production Research, 56(1-2), 278-311.
Govindan, K., Jha, P. C., & Garg, K. (2016). Product recovery optimization in closed-loop supply chain to improve sustainability in manufacturing. International Journal of Production Research, 54(5), 1463-1486.
Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603-626.
Gregson, N., Crang, M., Fuller, S., & Holmes, H. (2015). Interrogating the circular economy: the moral economy of resource recovery in the EU. Economy and society, 44(2), 218-243.
Gui, L. (2020). Recycling infrastructure development under extended producer responsibility in developing economies. Production and Operations Management, 29(8), 1858-1877.
Hallak, B. K., Nasr, W. W., & Jaber, M. Y. (2021). Re-ordering policies for inventory systems with recyclable items and stochastic demand–Outsourcing vs. in-house recycling. Omega, 105, 102514.
He, R., Heyn, W., Thiel, F., Pérez, N., Damm, C., Pohl, D., Rellinghaus, B., Reimann, C., Beier, M., & Friedrich, J. (2019). Thermoelectric properties of silicon and recycled silicon sawing waste. Journal of Materiomics, 5(1), 15-33.
He, M., Jin, Y., Zeng, H., & Cao, J. (2020). Pricing decisions about waste recycling from the perspective of industrial symbiosis in an industrial park: A game model and its application. Journal of Cleaner Production, 251, 119417.
Herczeg, G., Akkerman, R., & Hauschild, M. Z. (2018). Supply chain collaboration in industrial symbiosis networks. Journal of Cleaner Production, 171, 1058-1067.
Homrich, A. S., Galvão, G., Abadia, L. G., & Carvalho, M. M. (2018). The circular economy umbrella: Trends and gaps on integrating pathways. Journal of Cleaner Production, 175, 525-543.
Hsu, C. C., Chen, Z.-Y., & Wang, J. (2019). 12-inch fabs achieve TMAH concentration reduction target of 2019 to fulfill green manufacturing. Retrieved May 15, 2023 from https://esg.tsmc.com/en/update/greenManufacturing/caseStudy/24/index.html
Huang, L., Zhen, L., & Yin, L. (2020). Waste material recycling and exchanging decisions for industrial symbiosis network optimization. Journal of Cleaner Production, 276, 124073.
Jaber, M. Y., & El Saadany, A. M. (2009). The production, remanufacture and waste disposal model with lost sales. International Journal of Production Economics, 120(1), 115-124.
Jayaraman, V. (2006). Production planning for closed-loop supply chains with product recovery and reuse: an analytical approach. International Journal of Production Research, 44(5), 981-998.
Jayaraman, V., Guide Jr, V. D. R., & Srivastava, R. (1999). A closed-loop logistics model for remanufacturing. Journal of the Operational Research Society, 50(5), 497-508.
Jiang, P. C., Feng, G. F., & Yang, H. C. (2022). New measurement of sovereign ESG index. Innovation and Green Development, 1(2), 100009.
Jiao, W., & Boons, F. (2014). Toward a research agenda for policy intervention and facilitation to enhance industrial symbiosis based on a comprehensive literature review. Journal of Cleaner Production, 67, 14-25.
John, E. P., & Mishra, U. (2023). A sustainable three-layer circular economic model with controllable waste, emission, and wastewater from the textile and fashion industry. Journal of Cleaner Production, 388, 135642.
Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221-232.
Koh, S.-G., Hwang, H., Sohn, K.-I., & Ko, C.-S. (2002). An optimal ordering and recovery policy for reusable items. Computers & Industrial Engineering, 43(1-2), 59-73.
Konstantaras, I., & Papachristos, S. (2006). Lot-sizing for a single-product recovery system with backordering. International Journal of Production Research, 44(10), 2031-2045.
Konstantaras, I., & Papachristos, S. (2008a). Note on: An optimal ordering and recovery policy for reusable items. Computers & Industrial Engineering, 55(3), 729-734.
Konstantaras, I., & Papachristos, S. (2008b). A note on: Developing an exact solution for an inventory system with product recovery. International Journal of Production Economics, 111(2), 707-712.
Konstantaras, I., & Skouri, K. (2010). Lot sizing for a single product recovery system with variable setup numbers. European Journal of Operational Research, 203(2), 326-335.
Konstantaras, I., Skouri, K., & Jaber, M. Y. (2010). Lot sizing for a recoverable product with inspection and sorting. Computers & Industrial Engineering, 58(3), 452-462.
Lechner, G., & Reimann, M. (2020). Integrated decision-making in reverse logistics: an optimisation of interacting acquisition, grading and disposition processes. International Journal of Production Research, 58(19), 5786-5805.
Li, J., Lian, G., & Xu, A. (2023). How do ESG affect the spillover of green innovation among peer firms? Mechanism discussion and performance study. Journal of Business Research, 158, 113648.
Liu, K., Liu, C., Xiang, X., & Tian, Z. (2023). Testing facility location and dynamic capacity planning for pandemics with demand uncertainty. European journal of operational research, 304(1), 150-168.
Lu, C., Wang, S., Wang, K., Gao, Y., & Zhang, R. (2020). Uncovering the benefits of integrating industrial symbiosis and urban symbiosis targeting a resource-dependent city: a case study of Yongcheng, China. Journal of Cleaner Production, 255, 120210.
Mabini, M. C., Pintelon, L. M., & Gelders, L. F. (1992). EOQ type formulations for controlling repairable inventories. International Journal of Production Economics, 28(1), 21-33.
Markopoulos, P. M., & Hosanagar, K. (2018). A model of product design and information disclosure investments. Management Science, 64(2), 739-759.
Matino, I., Colla, V., Branca, T. A., & Romaniello, L. (2017). Optimization of by-products reuse in the steel industry: valorization of secondary resources with a particular attention on their pelletization. Waste and Biomass Valorization, 8, 2569-2581.
Murray, A., Skene, K., & Haynes, K. (2017). The circular economy: an interdisciplinary exploration of the concept and application in a global context. Journal of Business Ethics, 140, 369-380.
Nahmiasj, S., & Rivera, H. (1979). A deterministic model for a repairable item inventory system with a finite repair rate. International Journal of Production Research, 17(3), 215-221.
OECD. (2014). The State of Play on Extended Producer Responsibility (EPR): Opportunities and Challenges. Global Forum on Environment: Promoting Sustainable Materials Management through Extended Producer Responsibility (EPR), Tokyo, Japan. https://www.oecd.org/environment/waste/Global%20Forum%20Tokyo%20Issues%20Paper%2030-5-2014.pdf
Oh, D., Noguchi, T., Kitagaki, R., & Choi, H. (2021). Proposal of demolished concrete recycling system based on performance evaluation of inorganic building materials manufactured from waste concrete powder. Renewable and Sustainable Energy Reviews, 135, 110147.
Omar, M., & Yeo, I. (2009). A model for a production–repair system under a time-varying demand process. International Journal of Production Economics, 119(1), 17-23.
Omar, M., & Yeo, I. (2014). A production–repair inventory model with time-varying demand and multiple setups. International Journal of Production Economics, 155, 398-405.
Popescu, D. G., & Seshadri, S. (2013). Demand uncertainty and excess supply in commodity contracting. Management Science, 59(9), 2135-2152.
Rajaeifar, M. A., Ghadimi, P., Raugei, M., Wu, Y., & Heidrich, O. (2022). Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective. Resources, Conservation, and Recycling, 180, 106144.
Reike, D., Vermeulen, W. J., & Witjes, S. (2018). The circular economy: new or refurbished as CE 3.0?—exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options. Resources, Conservation and Recycling, 135, 246-264.
Richter, K. (1996a). The EOQ repair and waste disposal model with variable setup numbers. European Journal of Operational Research, 95(2), 313-324.
Richter, K. (1996b). The extended EOQ repair and waste disposal model. International Journal of Production Economics, 45(1-3), 443-447.
Schrady, D. A. (1967). A deterministic inventory model for reparable items. Naval Research Logistics Quarterly, 14(3), 391-398.
Sgarbossa, F., & Russo, I. (2017). A proactive model in sustainable food supply chain: Insight from a case study. International Journal of Production Economics, 183, 596-606.
Shen, C.-w., Tran, P. P., & Minh Ly, P. T. (2018). Chemical waste management in the US semiconductor industry. Sustainability, 10(5), 1545.
Shi, J., Chen, W., Zhou, Z., & Zhang, G. (2020). A bi-objective multi-period facility location problem for household e-waste collection. International Journal of Production Research, 58(2), 526-545.
Sting, F. J., & Huchzermeier, A. (2012). Dual sourcing: Responsive hedging against correlated supply and demand uncertainty. Naval Research Logistics (NRL), 59(1), 69-89.
Suzanne, E., Absi, N., & Borodin, V. (2020). Towards circular economy in production planning: Challenges and opportunities. European Journal of Operational Research, 287(1), 168-190.
Testa, F., Coetsier, C., Carretier, E., Ennahali, M., Laborie, B., & Moulin, P. (2014). Recycling a slurry for reuse in chemical mechanical planarization of tungsten wafer: Effect of chemical adjustments and comparison between static and dynamic experiments. Microelectronic Engineering, 113, 114-122.
Teunter, R. (2004). Lot-sizing for inventory systems with product recovery. Computers & Industrial Engineering, 46(3), 431-441.
Teunter, R. H. (2001). Economic ordering quantities for recoverable item inventory systems. Naval Research Logistics (NRL), 48(6), 484-495.
Tsai, W.-T., Chen, H.-P., & Hsien, W.-Y. (2002). A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes. Journal of Loss Prevention in the Process Industries, 15(2), 65-75.
TSMC. (2022). TSMC 2022 Sustainability Report. Retrieved October 4, 2023 from https://esg.tsmc.com/download/file/2022_sustainabilityReport/english/e-all.pdf
Turken, N., Cannataro, V., Geda, A., & Dixit, A. (2020). Nature inspired supply chain solutions: definitions, analogies, and future research directions. International Journal of Production Research, 58(15), 4689-4715.
Van Loon, P., & Van Wassenhove, L. N. (2018). Assessing the economic and environmental impact of remanufacturing: A decision support tool for OEM suppliers. International Journal of Production Research, 56(4), 1662-1674.
Vanga, R., & Venkateswaran, J. (2020). Fleet sizing of reusable articles under uncertain demand and turnaround times. European Journal of Operational Research, 285(2), 566-582.
Widyadana, G. A., & Wee, H. M. (2010). Revisiting lot sizing for an inventory system with product recovery. Computers & Mathematics with Applications, 59(8), 2933-2939.
WSTS. (2018). WSTS Forecast Summary. Retrieved May 8, 2023 from https://www.wsts.org/esraCMS/extension/media/f/WST/3613/WSTS-nr-2018_08.pdf
Wu, J., Lu, J., & Jin, R. (2021). Quantitative indicators for evolution of a typical iron and steel industrial symbiosis network. Journal of Cleaner Production, 287, 125491.
Yang, C.-H., Liu, H.-b., Ji, P., & Ma, X. (2016). Optimal acquisition and remanufacturing policies for multi-product remanufacturing systems. Journal of Cleaner Production, 135, 1571-1579.
Zeng, W., Li, B., Li, H., Li, W., Jin, H., & Li, Y. (2019). Mass produced NaA zeolite membranes for pervaporative recycling of spent N-Methyl-2-Pyrrolidone in the manufacturing process for lithium-ion battery. Separation and Purification Technology, 228, 115741.
Zhang, C., Chen, Y.-X., & Tian, Y.-X. (2023). Collection and recycling decisions for electric vehicle end-of-life power batteries in the context of carbon emissions reduction. Computers & Industrial Engineering, 175, 108869.
Zhang, W., Liu, C., & Li, L. (2022). Economic and environmental implications of the interfirm waste utilisation. International Journal of Production Research, 60(16), 4868-4889.
Zhang, Z., Wu, J., & Wei, F. (2019). Refurbishment or quality recovery: Joint quality and pricing decisions for new product development. International Journal of Production Research, 57(8), 2327-2343.