簡易檢索 / 詳目顯示

研究生: 吳政倫
Wu, Cheng-Lun
論文名稱: 銀矽薄膜之奈米壓痕行為及其退火微觀結構變化之研究
Nanoindentation Behavior and Annealed Microstructural Evolution of Ag/Si Thin Film
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 95
中文關鍵詞: 奈米壓痕銀矽化物退火處理
外文關鍵詞: nanoindentation, silver silicide, annealing
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是探討銀矽薄膜受到奈米壓痕試驗後之機械性質,以及奈米壓痕試片進行退火處理後之微觀結構的變化。首先在(100)方向之單晶矽矽晶圓上,以熱蒸鍍機分別蒸鍍出100nm (第一組試片)與500nm(第二組試片)之銀薄膜;再以光罩蝕刻出輔助定位陣列,並利用奈米壓痕量測儀(MTS-XP)對兩組試片進行800nm深度之奈米壓痕測試,求取其機械性質。另將奈米壓痕試片以快速退火爐(RTA)分別進行未退火、退火600℃、700℃及800℃等處理,同時第二組試片在未受壓痕試驗的情況下進行退火600℃及800℃以作為對照,再利用聚焦離子束電子顯微鏡(FIB)製作出TEM試片,藉以觀察壓痕在經過各種條件的退火處理後,薄膜與基材材料微觀結構的變化。
    機械性質的量測結果顯示,各項機械性質曲線之趨勢受壓痕尺寸效應(在壓痕深度小於50 nm前)及基材效應(當壓痕深度接近基底時)所影響,厚度為100 nm之銀薄膜試片最後之硬度與楊氏模數分別為2.1GPa以及177.07GPa;而厚度為500 nm試片之硬度與楊氏模數分別為1.46GPa以及115.6GPa。微觀結構方面,當銀/矽薄膜受到奈米壓痕以及退火處理後,直接受到壓痕作用之區域會從原本的單晶矽變為非晶矽或是多晶矽以及非晶矽之混合相。當退火溫度較高時,直接受到壓痕作用之區域(壓痕影響區)多以多晶矽以及非晶矽之混合相的形貌出現。而壓痕影響區之周圍會有部分的矽發生變形以及滑移,最外圍之矽則仍保單晶矽之形貌。在兩種薄膜厚度各經700℃及800℃退火處理的實驗條件之試片,均可發現銀的矽化物AgSi之存在,而未經壓痕試驗即退火600℃和800℃的試片中則沒有銀的矽化物AgSi存在,證明了奈米壓痕行為可改變薄膜與基材間之能量、內應力及原子排列,再佐以退火溫度的作用,將加速銀、矽界面原子擴散,進而降低製程溫度。

    The nano-mechanical properties of as-deposited composite Ag / Si thin film comprising a Ag layer with a thickness of 100 nm and 500 nm deposited on a Si (100) substrate are investigated by performing nanoindenation tests to a maximum depth of 800 nm. The microstructural evolutions of as-deposited indented specimens and specimens annealed at temperature of 600℃, 700℃ and 800℃ for 2 min are then examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The nanoindentation results show that for both specimens with Ag layer thickness of 100 nm and 500 nm, the loading-unloading curve is continuous and smooth in the loading step. However, the unloading profile of the two specimens are clearly different. The unloading profile of the specimen with a thickness of 500 nm is continuous and smooth. However, the unloading curve of the specimen with a thickness of 100 nm has a prominent pop-out feature. The hardness and young’s modulus of the Ag / Si thin film indented to a maximum depth of 800 nm are determined to be 2.1 GPa and 92.07 GPa for the thin film with a thickness of 100nm, and 1.46 GPa and 83.6 GPa for the thickness of 500 nm. The microstructural observations reveal that the indentation affected zone of an as-deposited specimen is characterized by a mixture amorphous phase and nanocrystalline phase for the thin film with a thickness of 100 nm. However, the indentation affectef zone of the thin with a thickness of 500nm contains an amorphous phase only. Following the annealing process, the microstructure of the indentation affected zone contains a mixed structure of amorphous phase and nanocrystalline phase. At annealing temperature of 700℃ and 800℃, the silver silicide of AgSi is formed within the indentation affected zone for both thin films with thickness of 100 nm and 500 nm.

    總目錄 中文摘要 I Abstract II 誌謝 IV 總目錄 V 圖目錄 VII 第一章 前言 1 第二章 理論與文獻回顧 3 2-1銀矽合金性質介紹 3 2-1-1共晶接合之製程 3 2-1-2銀矽合金之應用 3 2-2奈米壓痕理論 4 2-2-1薄膜機械性質之量測 4 2-2-2奈米壓痕之數學模型 4 2-2-3連續勁度量測法 7 2-3奈米壓痕實驗前應注意的校正 9 2-3-1五點定位校正 9 2-3-2探針面積函數校正 9 2-3-3熱漂移校正 10 2-4影響薄膜量測之因素 10 2-4-1壓痕尺寸效應 10 2-4-2表面粗糙度 11 2-4-3基材效應 11 2-4-4擠出和沉陷效應 12 第三章 實驗流程與步驟 18 3-1實驗流程 18 3-2實驗儀器與設備 18 3-2-1熱蒸鍍機 (Thermal evaporator) 19 3-2-2電子束微影光罩製作系統 19 (Electron beam lithography system, EBL) 19 3-2-3奈米三維量測儀及奈米薄膜材料試驗機(Nano indenterXP) 21 3-2-4快速退火爐 (Rapid thermal annealing, RTA) 21 3-2-5聚焦式離子束顯微鏡(Focused ion beam, FIB) 22 3-2-6高解析穿透式電子顯微鏡 (High resolution transmission electron microscope, HR-TEM) 22 3-3試片製備 23 3-3-1微影蝕刻製程 23 3-4實驗方法與步驟 24 3-4-1奈米壓痕試驗 24 3-4-2對試片進行不同條件的退火處理 25 3-4-3微觀結構的觀察 25 第四章 實驗結果與討論 35 4-1薄膜機械性質之討論 35 4-1-1壓痕深度與負載曲線之分析 35 4-1-2壓痕深度與硬度曲線之分析 35 4-1-3壓痕深度與楊氏模數曲線之分析 36 4-2壓痕表面形貌之討論 36 4-2-1退火處理前後之壓痕表面形貌分析(I) 37 4-2-2退火處理前後之壓痕表面形貌分析(II) 38 4-3壓痕剖面形貌之討論 38 4-3-1壓痕剖面形貌討論(I) 39 4-3-2壓痕剖面形貌討論(II) 40 第五章 結論 88 參考文獻 89

    1. R. Bez, E. Camerlenghi, A. Modelli, And A. Visconti, ” Introduction to Flash Memory” IEEE, Vol. 91 No. 4 (2003) 489-502
    2. L. Baldi A Roberto Bez, “The scaling challenges of CMOS and the impact on high-density non-volatile memories” Microsyst Technol (2007) 133-138
    3. X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles and J. L. Goldman “High-performance thin-film transistors using semiconductor nanowires and nanoribbons” NATURE, Vol. 425 (2003) 274-278
    4. X. Chen and J. J. Vlassaka, “Numerical study on the measurement of thin film mechanical properties by means of nanoindentation”, J. Mater. Res., Vol. 16 No. 10, (2001) 2974-2982
    5. J. G. Swadener, E. P. George and G. M. Pharr, “The correlation of the indentation size effect measured with indenters of various shapes,” Journal of the Mechanics and Physics of Solids, 50 (2002) 681-694.
    6. G. M. Pharr, “Measurement of mechanical properties by ultra-low load indentation,” Materials Science and Engineering A, 253 (1998) 151-159.
    7. S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov and A. P. Ternovskii, “Mechanical properties of materials studied from kinetic diagrams of load versus depth of impression during microimpression”, Strength of Materials, Vol. 8 No.9 (1976)1084-1089
    8. B. Bokhonov and M. Korchagin, “In situ investigation of stage of the formation of eutectic alloys in Si-Au and Si-Al systems,” Journal of Alloys and Compounds, 312 (2000) 238-250.
    9. M. Hansen and K. Anderko, “Constitution of Binary Alloys,” 2nd ed. McGraw-Hill, N. Y. (1958) 51.
    10. C. Anthony and C. Fischer, “Nanoindentation,” 2nd ed. Springer, N. Y. (2004).
    11. S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” 2nd ed. McGraw-Hill, N. Y. (1951).
    12. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7 No. 6 (1992) 1564-1583.
    13. G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research, Vol. 7 No.3 (1992) 613-617.
    14. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research, Vol. 19 No. 1 (2004) 3-20.
    15. X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Materials Characterization, 48 (2002) 11-36.
    16. C. Anthony and C. Fischer, “Nanoindentation,” 2nd ed. Springer, N. Y. (2004).
    17. I. Manika and J. Maniks, “Size effects in micro- and nanoscale indentation,” Acta Materialia, 54 (2006) 2049-2056.
    18. K. D. Bouzakis, N. Michailidis, S. Hadjiyiannis, G. Skordaris and G. Erkens, “The effect of specimen roughness and indenter tip geometry on the determination accuracy of thin hard coatings stress-strain laws by nanoindentation, ” Materials Characterization, 49 (2003) 149-156.
    19. M. B. Daia, P. Aubert, S. Labdi, C. Sant, F. A. Sadi, Ph. Houdy and J. L. bozet, ”Nanoindentation investigation of Ti/TiN multilayers films,” Journal of Applied Physics, Vol. 87 No.11 (2000) 7753-7757.
    20. F. K. Mante, G. R. Baran and B. Lucas, “Nanoindentation studies of titanium single crystals,” Biomaterials, Vol. 20 No.11 (1999) 1051-1055.
    21. M. S. Bobji and S. K. Biswas, “Deconvolution of hardness from data obtained from nanoindentation of rough surfaces,” Journal of Materials Research, Vol. 14 No. 6 (1999) 2259-2268.
    22. R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation” Acta Materialia , 50(2002)23-28.
    23. M. Qasmi, P. Delobelle, F. Richard and A. Bosseboeuf, “Effect of the residual stress on the determination through nanoindentation technique of the Young's modulus of W thin film deposit on SiO2/Si substrate,” Surface & Coatings Technology, 200 (2006) 4185-4194.
    24. Y. Sun, T. Bell and S. Zheng, “Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation,” Thin Solid Films, 258(1995) 198-204
    25. D. E. Karmer, A. A. Volinsky, N. R. Moody and W. W. Gerberich, “Substrate effects on indentation plastic zone development in thin soft films,” Journal of Materials Research, Vol. 16 No. 11 (2001) 3150-3157
    26. A. Bolshakov and G. M. Pharr, “Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques,” Journal of Materials Research, Vol. 13 No. 4 (1998) 1049-1058.
    27. K. W. McElhaney, J. J. Vlassak and W. D. Nix, “Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments,” Journal of Materials Research, Vol. 13 No. 5 (1998) 1300-1306.
    28. K. Miyake, S. Fujisawa, A. Korenaga, T. Ishida and S. Sasaki, “The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation,” Japanese Journal of Applied Physics, Vol. 40 No. 7B (2004) 4602-4605.
    29. B. Yang and T. G. Nieh, “Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass,” Acta Materialia, 55 (2007) 295-300.
    30. R. Rao, J. E. Bradby, S. Ruffell and J. S. Williams, “Nanoindentation-induced phase transformation in crystalline silicon and relaxed amorphous silicon,” Microelectronics Journal, 38 (2007) 722-726.
    31. I. Zarudi, J.Zou and L. C. Zhang, “Microstructures of phases in indented silicon – A high resolution characterization,” Applied Physics Letters, Vol. 82 No. 6 (2003) 874 – 876.
    32. Z. Zong, J. Lou, O. O. Adewoye, A. A. Elmustafa, F. Hammad and W. O. Soboyejo, “Indentation size effects in the nano- and micro-hardness of fcc single crystal metals,” Materials Science and Engineering A, 434 (2006) 178-187.
    33. K. Durst, B. Backes and M. Göken, “Indentation size effect in metallic materials: Correcting for the size of the plastic zone,” Scripta Materialia, 52 (2005) 1093-1097.
    34. X. Li, H. Gao, C. J. Murphy, and K. K. Caswell, “Nanoindentation of Silver Nanowires” Nano Letters, Vol. 3 No. 11 (2003) 1495-1498
    35. A. J. Leistner, A. C. Fischer-Cripps and J. M. Bennett, “Indentation hardness and modulus of the surface of a large super-polished single crystal silicon sphere,” Proceedings of the International Society of Optical Engineering (SPIE), Bellingham, 5179 Optical Materials and Strucyures Technologies (2003) 215-222.
    36. J. Biener, A. M. Hodge, A. V. Hamza, L. M. Hsiung and J. H. Satcher, Jr, “Nanoporous Au: A high yield strength material,” Journal of Applied Physics 97, 024301 (2005) 1-4.
    37. A. A. Elmustafa and D. S. Stone, “Indentation size effect in polycrystalline F.C.C. metals,” Acta Materialia, 50 (2002) 3641-3650.
    38. S. Chen, L. Liu and T. Wang, “Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations,” Surface & Coatings Technology, 191 (2005) 25-32.
    39. Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti and W. Soboyejo, “Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness,” Mater. Sci. Eng. A, 427 (2006) 232-240.
    40. L. Siller, N. Peltekis, S. Krishnamurthy and Y. Chao, “Gold film with gold nitride-A conductor but harder than gold,” Applied Physics Letters 86, 221912 (2005) 1-3.
    41. B. Bokhonov, M. Korchagin, “In-situ investigation of the formation of eutectic alloys in the systems silicon–silver and silicon–copper, ” Journal of Alloys and Compounds, 335 (2002) 149–156.

    下載圖示 校內:2012-08-05公開
    校外:2012-08-05公開
    QR CODE