簡易檢索 / 詳目顯示

研究生: 趙祐霆
Jau, You-Ting
論文名稱: 蜂巢式下行網路中裝置間通訊之蓋爾夏普利資源配置演算法
Gale-Shapley-Algorithm Based Resource Allocation Scheme for Device-to-Device Communications Underlaying Downlink Cellular Networks
指導教授: 張志文
Chang, Wenson
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 46
中文關鍵詞: 蓋爾夏普利裝置間通訊頻譜共享雙邊配對
外文關鍵詞: Gale-Shapley, D2D Communications, spectrum sharing, bipartite matching
相關次數: 點閱:100下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在蜂巢式網路中,裝置間通訊可以藉由共享蜂巢式網路的資源進行直接通訊以提升網路的吞吐量以及頻譜使用效率。然而使用裝置間通訊會與蜂巢式網路系統帶來強烈的相互干擾進而抑制整體效能的成長。在本篇論文利用不同優先權的概念,我們主要解決裝置間通訊使用者及蜂巢式網路使用者在資源分配上所產生的問題。首先,我們修改了傳統的局部時間及頻率之資源分配法使得裝置間通訊的使用者能夠選擇自己要共享資源的夥伴,例如:裝置間通訊使用者可以根據自己喜好表上面的排序去選擇要共享資源的蜂巢式網路使用者使得其相互間的干擾能有效的降低。其次,我們進一步的將不同優先權的概念應用在蜂巢式網路使用者身上,意即所謂的雙邊差異優先權。最後,我們使用蓋爾夏普利演算法去解決裝置間通訊使用者與蜂巢式網路使用者之間的配對問題。根據模擬的結果,隨著容納越多裝置間通訊的使用者,我們提出的方法能夠大大的提升系統的穩定度以及吞吐量。

    Device-to-Device (D2D) communications underlaying cellular networks can improve the network capacity and spectrum efficiency by sharing the cellular resources in the direct-transmission mode. However, the stringent interference between D2D and cellular systems can seriously repress the overall performance improvement. In this thesis, we aim to solve this dilemma by applying the concept of differentiated priority into the resources sharing problem among the D2D pairs and cellular users. Firstly, we modified the conventional partial time-frequency resource allocation scheme to let each D2D pair select its sharing comrades, i.e. the cellular users, based on its own preference list such that less amount of mutually interference may be incurred. Secondly, the differentiated priority scheme is furthered implemented into the cellular users, i.e. the so-called bipartite differentiated priority. Then, the association problem between the D2D pairs and cellular users is solved by using the Gale-Shapley algoriithm. The simulation results show that the proposed schemes can greatly enhance the system stability and capacity, while accommodating more D2D pairs.

    Chinese Abstract i English Abstract ii Acknowledgements iii List of Tables vi List of Figures vii List of Variables ix List of Acronyms x 1 Introduction 1 1.1 Problem Formulation and Solution . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Background and Literature Survey 4 2.1 Introduction of Device-to-Device Communication . . . . . . . . . . . . 4 2.2 Problems in Device-to-Device Communication . . . . . . . . . . . . . . 5 2.2.1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 Spectrum Management . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Stable Marriage Problem and Gale-Shapley Algorithm . . . . . . . . . 8 2.3.1 Stable Marriage Problem . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 The Basic Concept of Gale-Shapley Algorithm . . . . . . . . . . 10 3 System Model 15 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Resource Allocation for D2D Communications 19 4.1 Conventional PRA Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Modi ed PRA Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3 GaSaBa Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Simulation Results 24 5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Number of D2D pairs vs. Number of Permitted D2D Connection . . . . 25 5.3 SNR vs. Cellular Communication Stability . . . . . . . . . . . . . . . . 28 5.4 Number of D2D pairs vs. Capacity . . . . . . . . . . . . . . . . . . . . 30 5.5 Capacity for various SNR values . . . . . . . . . . . . . . . . . . . . . . 34 5.6 Cumulative Distribution Function . . . . . . . . . . . . . . . . . . . . . 39 6 Conclusions and Future Works 41 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Bibliography 42 Vita 46

    [1] K. Doppler, M. Rinne, C. Wijting, C. B. Ribeiro, and K. Hugl, Device-to-device communication as an underlay to lte-advanced networks," Proc. IEEE Commun.
    Mag., vol. 47, pp. 42{49, Dec. 2009.
    [2] F. H. Fitzek, M. Katz, and Q. Zhang, Cellular controlled short-range communication for cooperative p2p networking," Proc. Wireless World Research Forum
    17, pp. 1-5, Nov. 2006.
    [3] C.-H. Yu, K. Doppler, C. Ribeiro, and O. Tirkkonen, Resource sharing optimization for device-to-device communication underlaying cellular networks," IEEE
    Trans. On Wireless Communications, vol. 10, pp. 2752-63, Aug. 2011.
    [4] X. Lin and J. G. Andrews, "Optimal spectrum partition and mode selection in device-to-device overlaid cellular networks," IEEE Globecom, pp. 1837-1842, Dec. 2013.
    [5] K. Doopler, C.-H. Yu, C. B. Riberio, and P. Janis, "Mode selection for device-to-device communication underlaying an LTE-advanced network," IEEE WCNC,
    pp. 1-6, 2010.
    [6] J. Zhang and K. B. Letaief, "Mode selection for energy-efficient D2D communication in LTE-advanced networks: A coalitional game approach," IEEE Communi-
    cation Systems (ICCS), pp. 488-492, Nov. 2012.
    [7] C.-H. Yu, O. Tirkkonen, K. Doppler, and C. Ribeiro, "Power optimization of device-to-device communication underlaying cellular communication," IEEE ICC,
    no. 4, pp. 1-5, June 2009.
    [8] C. H. Yu, O. Tirkkonen, K. Doppler, and C. Ribeiro, "On the performance of device-to-device underlay communication with simple power control," IEEE VTC,
    pp. 1-5, April 2009.
    [9] H. Xing and S. Hakola, "The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system," IEEE PIMRC, pp.
    1775-1780, Sept. 2010.
    [10] G. Fodor, D. D. Penda, M. Belleschi, M. Johansson, and A. Abrardo, "A comparative study of power control approaches for device-to-device communications," IEEE ICC, pp. 6008-6013, June 2013.
    [11] X. Xiao, X. Tao, and J. Lu, "A QoS-aware power optimization scheme in OFDMA systems with integrated device-to-device (D2D) communications," IEEE Vehicular
    Technology Conference (VTC Fall), pp. 1-5, Sept. 2011.
    [12] G. Fodor and N. Reider, "A distributed power control scheme for cellular network assisted D2D communications," IEEE Global Telecommunications Conference (GLOBECOM 2011), pp. 1-6, Dec. 2011.
    [13] Y. Kwak, S. Ro, S. Kim, and J. Lee, "Performance evaluation of D2D discovery with eNB based power control in LTE-advanced," IEEE Vehicular Technology Conference
    (VTC Fall), pp. 1-5, Sept. 2014.
    [14] W. O. Oduola, X. Li, L. Qian, and Z. Han, "Power control for device-to-device communications as an underlay to cellular system," IEEE Communications (ICC),
    pp. 5257-5262, Jun. 2014.
    [15] M. Jung, K. Hwang, and S. Choi, "Joint mode selection and power allocation scheme for power-efficient device-to-device (D2D) communication," in Vehicular
    Technology Conference (VTC), May 2012, pp. 1-5.
    [16] H. Zhou, Y. Ji, J. Li, and B. Zhao, "Joint mode selection, MCS assignment, resource allocation and power control for D2D communication underlaying cellular
    networks," in Wireless Communications and Networking Conference (WCNC), April 2014, pp. 1667-1672.
    [17] P. Janis, V. Koivunen, C. Ribeiro, J. Korhonen, K. Doppler, and K. Hugl, "Interference-aware resource allocation for device-to-device radio underlaying cellular networks," in Vehicular Technology Conference, April 2009, pp. 1-5.
    [18] S. Xu, H. Wang, T. Chen, Q. Huang, and T. Peng, "Effective interference cancellation scheme for device-to-device communication underlaying cellular networks,"
    in Vehicular Technology Conference, Sept. 2010, pp. 1-5.
    [19] T. Han, R. Yin, Y. Xu, and G. Yu, "Uplink channel reusing selection optimization for device-to-device communication underlaying cellular networks," in Personal
    Indoor and Mobile Radio Communications, Sept. 2012, pp. 559-564.
    [20] X. Chen, L. Chen, M. Zhang, and D. Yang, "Downlink resource allocation for device-to-device communication underlaying cellular networks," in Personal Indoor and Mobile Radio Communications, Sept. 2012, pp. 232-237.
    [21] W. O. Oduola, X. Li, L. Qian, and Z. Han, "Device-to-device communications underlaying cellular networks," Communications, IEEE Transactions on, vol. 61, pp. 3541-3551, August 2013.
    [22] B. Wang, L. Chen, X. Chen, X. Zhang, and D. Yang, Resource allocation optimization for device-to-device communication underlaying cellular networks," in Vehicular Technology Conference, May 2011, pp. 1-6.
    [23] C. Xu, L. Song, Z. Han, Q. Zhao, X. Wang, and B. Jiao, "Interference-aware resource allocation for device-to-device communications as an underlay using sequential
    second price auction," in Proc. IEEE International Conference on Communications, June 2012, pp. 445-449.
    [24] F. Wang, C. Xu, L. Song, Q. Zhao, X. Wang, and Z. Han, "Energy-aware resource allocation for device-to-device underlay communication," in Proc. IEEE
    International Conference on Communications, June 2013, pp. 6076-6080.
    [25] D. H. Lee, K. W. Choi, W. S. Jeon, and D. G. Jeong, "Resource allocation scheme for device-to-device communication for maximizing spatial reuse," in Wireless Communications and Networking Conference, April 2013, pp. 112-117.
    [26] X. Cai, J. Zheng, Y. Zhang, and H. Murata, "A capacity oriented resource allocation algorithm for device-to-device communication in mobile cellular networks," in Proc. IEEE International Conference on Communications, June 2014, pp. 2233-2238.
    [27] Y. Chai, Q. Du, and P. Ren, "Partial time-frequency resource allocation for device-to-device communications underlaying cellular networks," in Proc. IEEE International Conference on Communications, June 2013, pp. 6055-6059.
    [28] M. Belleschi, G. Fodor, and A. Abrardo, "Performance analysis of a distributed resource allocation scheme for d2d communications," in Proc. IEEE Wksp. Machine-to-Machine Commun., Dec. 2011, pp. 358-362.
    [29] P. Phunchongharn, E. Hossain, and D. I. Kim, "Resource allocation for device-to-device
    communications underlaying lte-advanced networks," Wireless Communications, IEEE, vol. 20, pp. 91-100, August 2013.
    [30] D. Gus eld and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms, 1st ed. The MIT Press, 1989.
    [31] A. Liu, V. K. N. Lau, L. Ruan, J. Chen, and D. Xiao, "Hierarchical radio resource optimization for heterogeneous networks with enhanced inter-cell interference coordination (eicic)," Signal Processing, IEEE Transactions on, vol. 62, pp. 1684-1693, April 2014.
    [32] E. Biton, A. Cohen, G. Reina, and O. Gurewitz, "Distribute inter-cell interference mitigation via joint scheduling and power control under noise rise constraints," Wireless Communications, IEEE Transactions on, vol. 13, pp. 3464-3477, June 2014.

    無法下載圖示 校內:2018-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE