簡易檢索 / 詳目顯示

研究生: 林盈良
Lin, Ying-Liang
論文名稱: CAD實體模型重建與網格化
Reconstruction and Mesh Generation of CAD Solid Model
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 100
中文關鍵詞: 網格化ANSYSIGESInPackIC封裝
外文關鍵詞: Mesh Generation, InPack, IC Packaging, IGES, ANSYS
相關次數: 點閱:71下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • InPack是一套專為IC封裝製程分析所設計的軟體。InPack可快速產生IC 封裝分析所需的有限元素網格,大幅的減少整個分析中前處理所花費的時間。對模流分析而言,流道的幾何外型會對膠體進入Package的流動情形造成影響,可是InPack只能產生Package範圍內的網格,對整個分析模擬的準確性及完整性有所不足。
    本文即針對這個問題,開發一個專為處理CAD實體模型重建與模型網格產生的模組,可用來處理流道網格化的工作。由於流道部分的外型千變萬化,軟體利用CAD軟體轉出的IGES幾何模型交換檔,將流道的幾何模型重建出來,並利用ANSYS網格化的功能,在軟體親切的使用者介面下,透過幾個簡單的設定,即可產生適合的有限元素網格,並與Package部分的網格做結合,進行完整的模流分析模擬。大幅的降低前處理流程的困難度及提升分析模擬的準確性。

    InPack, a CAE software is developed for IC packaging analysis. InPack provides a convenient interface to generate good 3-D mesh of hexahedron or prism and dramatically reduces the mesh generation time. For mold flow simulations, the geometry of runner has critical influence when the colloids enter package. However, InPack only generates the meshes inside the package, which is insufficient on accuracy and completeness for the simulation.
    Therefore, this thesis is focusing on generating runner meshes by developing a function in InPack, which specifically performs reconstruction and mesh generation of CAD solid model. This function reconstructs the various shape of runner from standard data exchange file of geometry model, IGES. Also, this function provides a friendly interface to generate appropriate 3-D meshes by ANSYS mesh generator. The runner meshes can be integrated with the package meshes to complete the mold flow simulations. It reduces the difficulties in pre-processor and improves the accuracy of simulation obviously.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究背景 1 1-3 研究目的及方法 4 1-4 文獻回顧 5 1-5 本文架構 9 第二章 CAD系統物件結構 11 2-1 CAD系統幾何模型結構 11 2-2 Solid Model資料結構 13 2-3 CAD系統間的資料交換 17 2-4 IGES檔案格式 19 2-4.1 IGES檔的ACSII格式介紹 19 2-4.2 IGES檔的各圖元介紹 23 第三章 IGES檔案幾何模型重建 38 3-1 幾何模型重建流程 38 3-2 幾何模型資料結構 39 3-3 曲線及模型邊界處理 42 3-4 曲面的產生與繪製 45 3-5 曲面的剪裁 52 3-6 幾何模型重建結果 60 第四章 網格的產生 62 4-1 有限元素法基本概念 62 4-2 需要的網格型式 63 4-3 利用ANSYS產生網格 65 4-4 自動化四面體網格分割 70 第五章 軟體使用流程與結果 76 5-1 軟體使用流程 76 5-2 應用實例 77 5-2.1 IC Package網格產生 77 5-2.2 流道網格產生 80 5-2.3 流道與IC Package網格的結合與模流分析結果 84 5-3 自動化網格分割結果 86 第六章 綜合討論與未來展望 88 6-1 研究成果與討論 88 6-2 未來展望 90 參考文獻 91 中文索引 94 Index 97 自述 100

    [1] Litke, Nathan, Adi Levin and Peter Schröder, “Trimming for subdivision surfaces,” Computer Aided Geometric Design, Vol.18, No.5, 463-481(2001).
    [2] Ravi, G.V.V. Kumar, Prabha Srinivasan, K.G. Shastry and B.G. Prakash, “Geometry based triangulation of multiple trimmed NURBS surfaces,” Computer-aided Design, Vol.33, No.6, 439-454 (2001).
    [3] Piegl, Leslie A. and Arnaud M Richard, “Tessellating trimmed nurbs surfaces,” Computer-aided Design, Vol.27, No.1, 16-26(1995).
    [4] Piegl, Les A. and Arnaud M. Richard, “Algorithm and data structure for triangulating multiply connected polygonal domains,” Comput. & Graphics, Vol.17, No.5, 563-574(1993).
    [5] Piegl, Les A. and Wayne Tiller, “Geometry-based triangulation of trimmed NURBS surfaces,” Computer-aided Design, Vol.30, No.1, 11-18(1998).
    [6] Weatherill, N. P. and O. Hassan, “Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints,” International Journal for Numerical Methods in Engineering, Vol.37, 2005-2039(1994).
    [7] Kondo, Koichi, “Three-dimensional finite element meshing by incremental node insertion,” International Journal for Numerical Methods in Engineering, Vol.39, 3519-3534(1996).
    [8] George, P. L. and F. Hermeline, “Delaunay’s mesh of a convex polyhedron in dimension d. application to arbitrary polyhedra,” International Journal for Numerical Methods in Engineering, Vol.33, 975-995(1992).
    [9] Zheng, Yao, Roland W. Lewis and David T. Gethin, “Three- dimensional unstructured mesh generation: Part 1. Fundamental aspects of triangulation and point creation,” Computer Methods in Applied Mechanics and Engineering, Vol.134, 249-268(1996).
    [10] Zheng, Yao, Roland W. Lewis and David T. Gethin, “Three- dimensional unstructured mesh generation: Part 2. Surface meshes,” Computer Methods in Applied Mechanics and Engineering, Vol.134, 269-284(1996).
    [11] Zheng, Yao, Roland W. Lewis and David T. Gethin, “Three- dimensional unstructured mesh generation: Part 3. Volume meshes,” Computer Methods in Applied Mechanics and Engineering, Vol.134, 285-310(1996).
    [12] Fang, Tsung-Pao and Les A. Piegl, “Delaunay triangulation using a uniform grid,” IEEE Computer Graphics & Applications, Vol.13, No.3, 36-47(1993).
    [13] Cignoni, P., C. Montani and R. Scopigno, “DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed,” Computer-aided Design, Vol.30, No.5, 333-341(1998).
    [14] Foley, J. D., A. van Dam, S. K. Feiner and J. F. Hughes, “Computer Graphics Principles and Practice,” Addison-Wesley (1990).
    [15] Mäntylä, Martti, “An Introduction to Solid Modeling,” Computer Science Press (1988).
    [16] Toriya, H. and H. Chiyokura, “3D CAD Principals and Applications,” Springer-Verlag New York (1991).
    [17] Chiyokura, Hiroaki, “Solid Modeling with DESIGNBASE Theory and Implementation,” Addison-Wesley Publishing Company (1988).
    [18] Zeid, Ibrahim, “CAD/CAM Theory and Practice,” McGraw-Hill, Inc. (1991)
    [19] Smith, B., G. R. Rinaudot, K. A. Reed and T. Wright, “Initial Graphics Exchange Specification (IGES), Version 4.0,” U.S. Dept. of Commerce, Nation Bureau of Standards (1988).
    [20] Lee, Kunwoo, “Principles of CAD/CAM/CAE System.” Addison Wesley Longman (1999).
    [21] Piegl, Les A. and Wayne Tiller, “The NURBS Book,” 2ed edition, Springer-Verlag New York (1997).
    [22] Nakamura, Shoichiro, “Applied Numerical Method in C,” P T R Prentice Hall (1993).
    [23] Gardan, Yvon, “Mathematics and CAD Volume 1 Numerical Methods for CAD,”Hermes Publishing (1986).
    [24] George, P. L., “Automatic Mesh Generation Application to Finite Element Methods,”John Wiley & Sons (1991).

    下載圖示 校內:立即公開
    校外:2002-07-15公開
    QR CODE