| 研究生: |
林盈良 Lin, Ying-Liang |
|---|---|
| 論文名稱: |
CAD實體模型重建與網格化 Reconstruction and Mesh Generation of CAD Solid Model |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 網格化 、ANSYS 、IGES 、InPack 、IC封裝 |
| 外文關鍵詞: | Mesh Generation, InPack, IC Packaging, IGES, ANSYS |
| 相關次數: | 點閱:71 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
InPack是一套專為IC封裝製程分析所設計的軟體。InPack可快速產生IC 封裝分析所需的有限元素網格,大幅的減少整個分析中前處理所花費的時間。對模流分析而言,流道的幾何外型會對膠體進入Package的流動情形造成影響,可是InPack只能產生Package範圍內的網格,對整個分析模擬的準確性及完整性有所不足。
本文即針對這個問題,開發一個專為處理CAD實體模型重建與模型網格產生的模組,可用來處理流道網格化的工作。由於流道部分的外型千變萬化,軟體利用CAD軟體轉出的IGES幾何模型交換檔,將流道的幾何模型重建出來,並利用ANSYS網格化的功能,在軟體親切的使用者介面下,透過幾個簡單的設定,即可產生適合的有限元素網格,並與Package部分的網格做結合,進行完整的模流分析模擬。大幅的降低前處理流程的困難度及提升分析模擬的準確性。
InPack, a CAE software is developed for IC packaging analysis. InPack provides a convenient interface to generate good 3-D mesh of hexahedron or prism and dramatically reduces the mesh generation time. For mold flow simulations, the geometry of runner has critical influence when the colloids enter package. However, InPack only generates the meshes inside the package, which is insufficient on accuracy and completeness for the simulation.
Therefore, this thesis is focusing on generating runner meshes by developing a function in InPack, which specifically performs reconstruction and mesh generation of CAD solid model. This function reconstructs the various shape of runner from standard data exchange file of geometry model, IGES. Also, this function provides a friendly interface to generate appropriate 3-D meshes by ANSYS mesh generator. The runner meshes can be integrated with the package meshes to complete the mold flow simulations. It reduces the difficulties in pre-processor and improves the accuracy of simulation obviously.
[1] Litke, Nathan, Adi Levin and Peter Schröder, “Trimming for subdivision surfaces,” Computer Aided Geometric Design, Vol.18, No.5, 463-481(2001).
[2] Ravi, G.V.V. Kumar, Prabha Srinivasan, K.G. Shastry and B.G. Prakash, “Geometry based triangulation of multiple trimmed NURBS surfaces,” Computer-aided Design, Vol.33, No.6, 439-454 (2001).
[3] Piegl, Leslie A. and Arnaud M Richard, “Tessellating trimmed nurbs surfaces,” Computer-aided Design, Vol.27, No.1, 16-26(1995).
[4] Piegl, Les A. and Arnaud M. Richard, “Algorithm and data structure for triangulating multiply connected polygonal domains,” Comput. & Graphics, Vol.17, No.5, 563-574(1993).
[5] Piegl, Les A. and Wayne Tiller, “Geometry-based triangulation of trimmed NURBS surfaces,” Computer-aided Design, Vol.30, No.1, 11-18(1998).
[6] Weatherill, N. P. and O. Hassan, “Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints,” International Journal for Numerical Methods in Engineering, Vol.37, 2005-2039(1994).
[7] Kondo, Koichi, “Three-dimensional finite element meshing by incremental node insertion,” International Journal for Numerical Methods in Engineering, Vol.39, 3519-3534(1996).
[8] George, P. L. and F. Hermeline, “Delaunay’s mesh of a convex polyhedron in dimension d. application to arbitrary polyhedra,” International Journal for Numerical Methods in Engineering, Vol.33, 975-995(1992).
[9] Zheng, Yao, Roland W. Lewis and David T. Gethin, “Three- dimensional unstructured mesh generation: Part 1. Fundamental aspects of triangulation and point creation,” Computer Methods in Applied Mechanics and Engineering, Vol.134, 249-268(1996).
[10] Zheng, Yao, Roland W. Lewis and David T. Gethin, “Three- dimensional unstructured mesh generation: Part 2. Surface meshes,” Computer Methods in Applied Mechanics and Engineering, Vol.134, 269-284(1996).
[11] Zheng, Yao, Roland W. Lewis and David T. Gethin, “Three- dimensional unstructured mesh generation: Part 3. Volume meshes,” Computer Methods in Applied Mechanics and Engineering, Vol.134, 285-310(1996).
[12] Fang, Tsung-Pao and Les A. Piegl, “Delaunay triangulation using a uniform grid,” IEEE Computer Graphics & Applications, Vol.13, No.3, 36-47(1993).
[13] Cignoni, P., C. Montani and R. Scopigno, “DeWall: A fast divide and conquer Delaunay triangulation algorithm in Ed,” Computer-aided Design, Vol.30, No.5, 333-341(1998).
[14] Foley, J. D., A. van Dam, S. K. Feiner and J. F. Hughes, “Computer Graphics Principles and Practice,” Addison-Wesley (1990).
[15] Mäntylä, Martti, “An Introduction to Solid Modeling,” Computer Science Press (1988).
[16] Toriya, H. and H. Chiyokura, “3D CAD Principals and Applications,” Springer-Verlag New York (1991).
[17] Chiyokura, Hiroaki, “Solid Modeling with DESIGNBASE Theory and Implementation,” Addison-Wesley Publishing Company (1988).
[18] Zeid, Ibrahim, “CAD/CAM Theory and Practice,” McGraw-Hill, Inc. (1991)
[19] Smith, B., G. R. Rinaudot, K. A. Reed and T. Wright, “Initial Graphics Exchange Specification (IGES), Version 4.0,” U.S. Dept. of Commerce, Nation Bureau of Standards (1988).
[20] Lee, Kunwoo, “Principles of CAD/CAM/CAE System.” Addison Wesley Longman (1999).
[21] Piegl, Les A. and Wayne Tiller, “The NURBS Book,” 2ed edition, Springer-Verlag New York (1997).
[22] Nakamura, Shoichiro, “Applied Numerical Method in C,” P T R Prentice Hall (1993).
[23] Gardan, Yvon, “Mathematics and CAD Volume 1 Numerical Methods for CAD,”Hermes Publishing (1986).
[24] George, P. L., “Automatic Mesh Generation Application to Finite Element Methods,”John Wiley & Sons (1991).