簡易檢索 / 詳目顯示

研究生: 黃同雋
Huang, Tong-Jyun
論文名稱: 以液相沉積法在氮化鎵上沉積鈦酸鍶膜之研究
Characterization of Liquid-phase-deposited SrTiO3 on GaN
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 69
中文關鍵詞: 液相沉積法鈦酸鍶氮化鎵
外文關鍵詞: Liquid Phase Deposition (LPD), SrTiO3, GaN
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦膜具有高介電係數,加入鍶形成鈦酸鍶膜之後會增加其介電係數,因此我們研究以液相沉積法來成長鈦酸鍶膜,經過多次的實驗我們發現鈦酸鍶膜不但具有高介電係數,也能經由改善來提升其良好的介面品質。
    在本文中,藉由使用液相沉積法我們成功的將鈦酸鍶薄膜沉積於氮化鎵材料上,液相沉積法是一種相當便宜又容易使用的氧化層沉積技術,並且可於室溫下使用,沉積的速率約可達到每小時45奈米。為了分析液相沉積法所沉積之二氧化鈦薄膜,我們使用X光譜儀、二次離子質譜儀與能量散佈分析儀來分析氧化層的化學組成成分和元素鍵結,掃描電子顯微鏡及原子力顯微鏡則用來觀察薄膜的表面狀態。當我們成長100奈米厚的氧化層時,氧化層漏電流密度可達到10-4A/cm2而電場約為-5MV/cm,崩潰電場則可以達到-6MV/cm以上。在經過高純度氮氣環境下的退火處理後,藉由X光繞射我們觀察到二氧化鈦氧化層由非晶相轉換至銳鈦礦及金紅石相且結晶顆粒增大,表面粗糙度也有所改善,在600℃退火處理後,最高的相對介電常數可以達到36。在經過400℃退火處理後,二氧化鈦氧化層漏電流密度可達到4.3×10-5A/cm2而電場約為-4MV/cm,崩潰電場則可以達到-6.3MV/cm,而它的相對介電常數可以達到29。

    Titanium dioxide shows a high dielectric constant for dielectric applications. Besides, strontium can create additional oxygen vacancies that can enhance dielectric constant. In this study, we prepared SrTiO3 film by liquid phase deposition which is a novel material considered to have high dielectric constant. From several characteristic measurements, we found that SrTiO3 with exhibiting higher dielectric constant and well interface state.
    SrTiO3 oxide has been deposited on GaN material through the liquid phase deposition method (LPD) which provides a low-cost and low-complex method in forming oxide layers at room temperature. The deposition rate is about 45nm/hr. X-ray photoelectron spectroscopy (XPS), second ion mass spectrometer (SIMS), and energy-dispersive spectrometer (EDS) are used to analyze chemical composition. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are likewise used to observe the surface of the LPD-STO film. The leakage current is about 10-4A/cm2 at -5MV/cm and the breakdown field is more than -6MV/cm when the oxide thickness is 100nm. Upon annealing under an atmosphere of high purity N2, it is observed that the crystal phase of SrTiO3 transformed from the amorphous to the anatase and rutile phases and the crystal size increased by X-ray diffraction (XRD). Moreover, surface roughness improved significantly after thermal treatment, and the highest relative dielectric constant is 36 after annealing at 600℃. It is observed that the leakage current is about 4.3×10-5A/cm2 at -4MV/cm electric field and the breakdown field can reach -6.3MV/cm after annealing at 400℃ for 30 minutes, and the relative dielectric constant is 29.

    Contents Abstract List of Tables List of Figures Chapter 1 Introduction 1 1.1 Motivation 1 1.2 High Dielectric Constant Materials 4 1.3 Organization 5 Chapter 2 LPD System 7 2.1 Introduction of the STO film Material 7 2.2 LPD System 10 2.3 Experimental Procedures 12 Chapter 3 Properties of the SrTiO3 Oxide Films 16 3.1 Introduction 16 3.2 Physical and Chemical Properties 17 3.2.1 Thickness and deposition rate 17 3.2.2 SIMS depth profile 21 3.2.3 EDS analysis 23 3.2.4 XPS spectra 25 3.3 Surface Morphology 28 3.3.1 SEM analysis 28 3.3.2 AFM analysis 30 3.4 Electrical Characteristics 34 3.4.1 Introduction 34 3.4.2 Current-Voltage (I-V) measurement 36 3.4.3 Capacitance-Voltage (C-V) measurement 39 Chapter 4 Annealing Effects on the LPD-STO film 41 4.1 Introduction 41 4.2 Annealing Effects on the Physical and Chemical Properties 41 4.2.1 Thickness and deposition rate 42 4.2.2 XRD analysis 44 4.3 Annealing Effects on Surface Morphology 46 4.3.1 AFM analysis 46 4.4 Annealing Effects on Electrical properties 50 4.4.1 Relative dielectric constant 50 4.4.2 Current-Vltage (I-V) characteristic 53 4.5 Performance of the AlGaN/GaN MOS-HFETs 57 4.5.1 The saturated drain current 57 4.5.2 The transconductance 59 4.5.3 The gate leakage current and breakdown voltage 61 4.5.4 Summary 61 Chapter 5 Conclusions & Future Work 63 References: 65 List of Tables Table 1 Material properties of GaN and several conventional semiconductors 3 Table 2 Surface Roughness of different temperature and LPD-STO film 33 List of Figures Chapter 1 Fig. 1- 1 The organization chart of this thesis 6 Chapter 2 Fig. 2- 1 Relationship between the bandgap and the permittivity for simple dielectrics 9 Fig. 2- 2 Schematic diagram of the apparatus for preparing LPD-STO film 14 Fig. 2- 3 Procedure of preparing LPD solution 15 Chapter 3 Fig. 3- 1 Dependence of oxide thickness and refractive index on deposition 19 Fig. 3- 2 The plot for oxide thickness deposition time with different growth temperature and 4ml Sr(NO3)2 20 Fig. 3- 3 SIMS depth profiles of LPD-STO film on GaN 22 Fig. 3- 4 EDS analysis of LPD-STO film on GaN 24 Fig. 3- 5 XPS spectra of the LPD-STO film on GaN 26 Fig. 3- 6 XPS spectra of (a)Ti (b)O and (c)Sr in LPD-STO films grown on GaN 27 Fig. 3- 7 Surface of as-deposited LPD-STO film oxide on GaN 29 Fig. 3- 8 (a)AFM 2d image of GaN (b)AFM 3d image of GaN 31 Fig. 3- 9 (a)AFM 2d image of as-deposited STO film 32 Fig. 3- 10 (a)AFM 2d image of as-deposited STO film 32 Fig. 3- 11 The fabrication procedure of MOS structure 35 Fig. 3- 12 I-V characteristic of as-deposited LPD-STO film in 40 and 60℃ 37 Fig. 3- 13 The leakage current density of STO film below -6 MV/cm 38 Fig. 3- 14 C-V characteristic of as-deposited LPD-STO film in 40 and 60℃ 40 Chapter 4 Fig. 4- 1 The normalized thickness of the annealed STO film oxide as a function of annealing temperature 43 Fig. 4- 2 X-Ray diffraction analysis of LPD-STO film annealing at different temperature for 30 minutes 45 Fig. 4- 3 AFM image of LPD-STO film annealing at 400℃ on GaN and deposition temperature is 40 ℃ 47 Fig. 4- 4 AFM image of LPD-STO film annealing at 600℃ on GaN and deposition temperature is 40 ℃ 47 Fig. 4- 5 AFM image of LPD-STO film annealing at 400℃ on GaN and deposition temperature is 60 ℃ 48 Fig. 4- 6 AFM image of LPD-STO film annealing at 600℃ on GaN and deposition temperature is 60 ℃ 48 Fig. 4- 7 Surface roughness RMS value of LPD-STO film annealing at different temperature on GaN and deposition temperature is 40℃ and 60℃ 49 Fig. 4- 8 C-V characteristic of LPD-STO film after N2 annealing at 400 and 600℃ 51 Fig. 4- 9 The plot of relative dielectric constant versus annealing temperature 52 Fig. 4- 10 I-V characteristics of LPD-STO film annealing at 400 and 600℃ 54 Fig. 4- 11 The leakage current density of LPD-STO film annealing at 400 and 600℃ 55 Fig. 4- 12 The breakdown electric field of LPD-STO film annealing at 400 and 600℃ 56 Fig. 4- 13 The measured IDS-VDS characteristics of conventional HFET and MOS-HFET. 58 Fig. 4- 14 The measured transconductance and the drain current density versus VGS of conventional HFET and MOS-HFET. 60 Fig. 4- 15 The reverse gate leakage current versus VGS for conventional HFET 62

    References:

    [1]H. Morkoc, S. STrite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, pp. 1363-1398, 1994.
    [2]S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
    [3]I. Nomura, K. Kishino, and A. Kikuchi, “Theoretical estimation of threshold current of cubic GaInN/GaN/AlGaN quantum well lasers,” Solid-State Electronics., Vol. 41, pp. 283-286, 1997.
    [4]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
    [5]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Elect. Dev., vol. 41, pp. 1481-1483, 1994.
    [6]M. A. Kahn, J. N. Kuznia, A. R. Bhattrai, and D. T. Olson, “Metal contacts to gallium nitride,” Appl. Phys. Lett., vol. 62, pp. 2859-2861, 1993.
    [7]Y. Uzawa, Z. Wang, A. Osinsky, and B. Komiyama, “Submillimeter wave responses in NbN/AlN/NbN tunnel junctions,” Appl. Phys. Lett., vol. 66, pp. 1992-1994, 1995.
    [8]S. J. Pearton, GaN and Related Materials, Gordon and Breach Science Publishers.
    [9]Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN schottky rectifiers,” Appl. Phys. Lett., vol. 74, pp. 1266-1268, 1999.
    [10]M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, “Monte Carlo calculation of the velocity-field relationship for gallium nitride,” Appl. Phys. Lett., vol. 26, pp. 625-627, 1975.
    [11]U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of wurtzite GaN,” J. Appl. Phys., vol. 82, pp. 1649-1655, 1997.
    [12]F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 73, pp. 3893-3895, 1998.
    [13]M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillargeon, A. R. Kortan., J. P. Mannaerts, A. Y. Cho, C. M. Lee, J. I. Chyi, and T. S. Lay, “Properties of Ga2O3(Gd2O3)/GaN metal–insulator–semiconductor diodes,” J. Vac. Sci. Technol. B, vol. 18, pp. 1453-1456, 2000.
    [14]M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Lett., vol. 21, pp. 63-65, 2000.
    [15]Jack C. Lee, “Ultra-thin gate dielectric and High-k dielectric,”IEEE EDS vanguard series of independent short courses, pp. 129-133, 2005.
    [16]J. D. Deloach, G. Scarel, and C. R. Aita, “Correlation between titania film structure and near ultraviolet optical absorption,”J. Appl. Phys., vol. 85, pp. 2377-2348, 1999.
    [17]H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
    [18]X. H. XU, M. WANG, Y. HOU, et al., “Effect of Thermal Annealing on Structure Properties, Morphologies and Electrical Properties of TiO2 Thin Films Frown by MOCVD,”Cryst. Res. Technol., vol. 37, pp. 431-439, 2002.
    [19]M. P. Houng, Y. H. Wang, C. J. Huang, S. P. Huang, and J. H. Horng, “Quality optimization of liquid phase deposition SiO2 films on gallium arsenide,” Solid-State Electronics, vol. 44, pp. 1917-1923, 2000.
    [20]A. F. Tasch, Jr. and L. H. Parker, “Memory Cell and Technology Issues for 64- and 256-Mbit One-transistor Cell MOSD DRAMs,”Proc. IEEE, vol. 77, pp. 374-388 ,1989.
    [21] P. C. Joshi and S. B. Krupanidhi, “Structural and Electrical Characteristics of SrTiO3 Thin Films for Dynamic Random Access Memory Applications,” J.Appl. Phys., vol. 73, pp. 7627-7634, 1993.
    [22] M. N. Kamalasanan, N. D. Kumar, and S. Chandra, “Structural, Optical, and Dielectric Properties of Sol-gel Derived SrTiO3 Thin Films,” J. Appl. Phys., vol.74, pp. 679-686, 1993.
    [23] (a) P.C. Joshi, S.B. Krupanidhi, “Structural and electrical characteristics of SrTiOs thin films for dynamic” J. Appl. Phys. Vol. 73, pp. 7627-7634, 1993 (b)
    A.F. Tasch, Jr., L.H. Parker, Proc. “Memory Cell and Technology Issues for 64-and 256-Mbit One-Transistor Cell MOS DRAMs” IEEE, vol. 77, pp. 374-388, 1989.
    [24] T. Kunihisa, S. Yamamoto, M. Nishijima, T. Yokohama, M. Nishitsuji, K. Nishii,O. Ishikawa, “Low power dissipation single-supply MMIC power amplifier for 5.8 GHz electronic toll collection system” IEICE Trans. Electron. vol. E82-C,pp. 1921-1927, 1999.
    [25] G.D. Wilk, R.M. Wallace, J.M. Anthony “High- gate dielectrics: Current status and materials properties considerations,”J. Appl. Phys., vol. 89, pp. 5243-5275,
    2001. (and references therein).
    [26] M.N. Kamalasanan, N.D. Kumar, S. Chandra,“optical, and dielectric properties of sol-gel derived SrTiO3 thin films,” J. Appl. Phys. vol. 74, pp. 679-686, 1993.
    [27] J. A. Duffy, Bonding Energy Levels and Bands in Inorganic Solids, John Wiley: New York, 1990.
    [28] S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Elect. Dev., vol. 44, pp. 104-109, 1997.
    [29] D. K. Sarkar, E. Desbiens, and M. A. El Khakani, “High-k titanium silicate dielectric thin films grown by pulsed-laser deposition,” Appl. Phys. Lett., vol. 80,
    pp.294-296, 2002.
    [30] Takesshi Kamada, Masatoshi Kitagawa, Munehiro Shibuya and Takashi Hirao,“Structure and Properties of silicon Titanium Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys., vol.30, pp. 3594-3596, 1991.
    [31] X. Wang, H. Masumoto, Y. So meno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,”
    Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
    [32] (a) Schmitt, R. H.; Grove, E. L.; Brown, R. D. J. Am. Chem. Soc. 1960, 82, 5292. (b) Buslaev, Y. A.; Dyer, D. S.; Ragsdale, R. O. Inorg. Chem., 6, pp. 2208-2212,1967.
    [33] Deki, S.; Aoi, Y.; Asaoka, Y.; Kajinami, A.; Mizuhata, M. J. “Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a
    quartz crystal microbalance” Mater. Chem., vol. 7, pp. 733-736, 1997.
    [34] (a) Mesmer, R. E.; Palen, K. M.; Bases, C. F., Jr. Inorg. Chem., vol. 12, 89, 1973.(b) Wamser, C. A. J. Am. Chem. Soc., vol. 73, 49, 1951. (c) Wamser C. A. J. Am.
    Chem. Soc., vol. 70, 1209, 1948.
    [35] Yanfeng Gao, Yoshitake Masuda, Tetsu Yonezawa, and Kunihito Koumoto,“Site-Selective Deposition and Micropatterning of SrTiO3 Thin Film on Self-Assembled Monolayers by the Liquid Phase Deposition Method”Chem.
    Mater, vol 14, pp. 5006-5014, 2002
    [36] P. Madhu Kumar, S. Badrinarayanan, and Murali Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000.
    [37] C. Y. Chen and J. G. Hwu, “Effect of postoxidation annealing on the reliability of rapid thermal thin gate oxides,” IEEE Electron Device Lett., vol. 18, pp. 1-3,
    1997.
    [38] J. Jeng and J. G. Hwu, “Thin-gate oxides prepared by pure water anodization followed by rapid thermal densification,” IEEE Electron Device Lett., vol. 17, p.
    575-577, 1996.
    [39] Yanfeng Gao, Yoshitake Masuda, Tetsu Yonezawa, Kunihito Koumoto,“Preparation of SrTiO3 thin films by the liquid phase deposition method”Materials Science and Engineering, vol B99, pp. 290-293, 2003.
    [40]C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 88, pp. 173504-1-173504-3, 2006.
    [41] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations,” Appl. Phys. Lett., vol. 73, pp. 975-977, 1998.
    [42] H. Kim, J. Lee, D. Liu, and W. Lu, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing,” Appl. Phys. Lett., vol. 86, pp. 143505-1-143505-3, 2005.

    下載圖示 校內:2010-08-24公開
    校外:2010-08-24公開
    QR CODE