簡易檢索 / 詳目顯示

研究生: 羅國豪
Lo, Kuo-Hao
論文名稱: 潮流發電渦輪機之阻流板上被動式導流尾翼的最佳化設計
Design Optimization of a Passively Rotatable Deflector Diversion Tail for a Tidal Current Power Generation Hydrokinetic Turbine
指導教授: 李輝煌
Lee, Huei-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: ANSYS潮流渦輪發電機CFX阻流板導流尾翼
外文關鍵詞: Tidal current power generation turbine, Finite element analysis software, Deflector, Diversion tail
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於再生能源的需求日益增加,對於四面環海的台灣,海浪或潮流發電是十分適合開發的海洋能源,用於水力發電的垂直軸阻力型渦輪機其啟動轉速低及產生高扭力的特性,十分適合潮流發電,但潮流偏低的速度造成發電效率低讓其發展受限,許多研究已說明在垂直軸阻力型渦輪機前加裝固定式阻流板,透過降低水流直接衝擊渦輪機葉片的凸面造成的阻力負扭矩,以提高渦輪機的轉速,進而使渦輪機發電效率提高。
    然而,潮流流向是會受到季節及漲潮退潮等因素而有所改變,故若渦輪機只加裝固定式的阻流板,當潮流流向發生改變時,阻流板則無法有效的提高渦輪機的效率。
    因此,本研究透過在阻流板上加裝導流尾翼的設計,使整體阻流板能在任何水流方向下,皆能透過水流衝擊導流尾翼而被動轉向,有效的提高渦輪機的效率。而本研究目的在於針對此阻流板及導流尾翼的設計做探討,使阻流板及渦輪機能更快速穩定並達到最佳的發電效率表現,設計參數包含阻流板的縮減角度、阻流板與渦輪機的間隙及導流尾翼的高度。透過商業分析軟體ANSYS-CFX模擬計算渦輪機與阻流板的轉動情況及流場變化,同時與成功大學水工試驗所提供的實測結果做驗證,並探討加裝最佳化阻流板的渦輪機其性能表現。
    模擬結果顯示在加裝最佳化阻流板後,渦輪機在TSR為0.57時,最大Cp值為0.306,與未加裝阻流板的渦輪機相比,最大Cp值相差3.13倍,而相較於加裝原始設計阻流板的渦輪機,最大Cp值則提升了18%。

    In the present study, a deflector that can passively rotate is proposed for a tidal current power generation turbine, where when the flow direction changes, the deflector can rotate with the current direction. The rotation of the turbine and the deflector are simulated with finite element analysis software, and the power and torque generated by the turbine are calculated. In addition, the accuracy of the simulation results is verified through experiments. The purpose of this study is to maximize the output power of a hydrokinetic turbine by optimizing the geometry of the deflector and the diversion tail. The optimized deflector and diversion tail design are considered in the parameters, including the deflector reduction angle, the gap between the deflector and the turbine, and the height of diversion tail.
    The optimal geometry performance of the deflector and diversion tail is compared to the turbine without the deflector and with the original deflector over the entire operational range using CFD simulations. Without the deflector, the maximum power coefficient of the turbine was 0.0979 at a tip-speed ratio of 0.4. The maximum power coefficient of the turbine was 0.306 at a tip-speed ratio of 0.57 when using the optimal deflector. The results indicated that the power coefficient of the turbine was 3.13 times greater after adding the optimal deflector compared with the turbine without the deflector, and the power coefficient increased by 18 % compared with the turbine with the original deflector.

    摘要 I Extended Abstract III 致謝 XXVII 目錄 XXIX 表目錄 XXXIII 圖目錄 XXXIV 符號說明 XXXIX 第1章 緒論 1 1-1 前言 1 1-2 研究動機與目的 8 1-3 文獻回顧 8 1-4 文章架構 15 第2章 潮流渦輪發電機與理論 17 2-1 海洋能源 17 2-2 渦輪發電機 21 2-2-1 流體與機械功率 22 2-2-2 無因次化參數 23 2-2-3 水平軸渦輪機 24 2-2-4 垂直軸升力型渦輪機 25 2-2-5 垂直軸阻力型渦輪機 26 第3章 研究理論 28 3-1 分析軟體介紹 28 3-2 計算流體力學 29 3-2-1 有限體積法 30 3-2-2 統御方程式 31 3-2-3 紊流模型 33 3-2-4 壁面函數 36 3-2-5 網格介紹 37 第4章 研究方法與分析流程 39 4-1 實驗設置 39 4-2 CFD分析流程 41 4-3 幾何建構 41 4-3-1 葉片數目幾何 41 4-3-2 阻流板幾何設計 42 4-3-3 導流尾翼幾何設計 43 4-3-4 結構材料特性 45 4-4 邊界條件 46 4-5 網格處理 48 第5章 結果與討論 51 5-1 葉片數量對功率影響與模擬驗證 51 5-2 導流尾翼搭配單阻流板及雙阻流板比較 54 5-3 渦輪機加裝阻流板及導流尾翼結果 56 5-3-1 渦輪機特性曲線比較 56 5-3-2 阻流板及導流尾翼轉動情形 57 5-3-3 流場表現比較分析 61 5-4 阻流板及導流尾翼設計與最佳化分析 65 5-4-1 阻流板與渦輪機間隙對渦輪機的影響 65 5-4-2 阻流板角度對渦輪機的影響 67 5-4-3 導流尾翼高度對渦輪機的影響 70 5-5 渦輪機加裝最佳化阻流板及導流尾翼結果 72 5-5-1 渦輪機特性曲線比較 73 5-5-2 最佳化阻流板及導流尾翼轉動情況 74 5-5-3 水流速對功率及扭矩的影響 80 5-5-4 水流方向對功率的影響 82 第6章 結論與未來展望 89 6-1 結論 89 6-2 未來展望 92 參考文獻 93 索引 100

    [1] Eva Rosenberg, Arne Lind and Kari Aamodt Espegren, “The impact of future energy demand on renewable energy production – Case of Norway,” Energy, Vol. 61, pp. 419-431, 2013.
    [2] 經濟部能源局,“我國重點能源產業技術發展動向及策略”,2010 年能源產業技術白皮書,pp.220,2010。
    [3] 行政院科技顧問組,“再生能源科技重要結論”,行政院 2007年產業科技策略會議文集,2007。
    [4] 徐谷、劉倬騰、劉家瑄、許明光,“台灣東部黑潮發電之芻議”,台電工程月刊,Vol. 624,No. 3,pp. 81-89,1999。
    [5] F. Chen, “Kuroshio Power Plant Development Plan”, Renewable and Sustainable Energy Reviews, Vol.14, pp.2655–2668, 2010。
    [6] Yi-An Chen, Stability analysis and dynamic simulation of submerged Kuroshio generator system, Master Thesis, Department of Systems Engineering and Naval Architecture College of Engineering, National Taiwan Ocean University, Taiwan, 2014.
    [7] Bang-Fuh Chen, Lung-Chern Chen, Chia-chen Huang, Z. L. Jiang, Jin-Yuan Liu, Shian-yun Lu, Syue-Sinn Leu, Wen-ming Tien, Der-ming Tsai and Shinna Wu, "The deployment of the first tidal energy capture system in Taiwan," Ocean Engineering, Vol. 155, pp. 261-277, 2018.
    [8] Yang-Yih Chen, Hung-Chu Hsu and Chao-Wei Su, "Field Test of KW Kuroshio Power-energy Pilot Facilities in The Open Sea," Proceedings of the 37th Ocean Engineering Conference, National Chung Hsing University, Taiwan, 2015.
    [9] Kailash Golecha, T. I. Eldho and S. V. Prabhu, "Influence of the deflector plate on the performance of modified Savonius water turbine," Applied Energy, Vol. 88, pp. 3207-3217, 2011.
    [10] Michael Heath, Alessandro Sabatino, Natalia Serpetti, Chris McCaig and Rory O'Hara Murray, “Modelling the sensitivity of suspended sediment profiles to tidal current and wave conditions,” Ocean & Coastal Management, Vol. 147, pp.49-66, 2017.
    [11] 邱文彥, 海洋與海岸管理, 五南圖書股份有限公司, 2017.
    [12] Anuj Kumar and R. P. Saini, “Performance parameters of Savonius type hydrokinetic turbine – A Review,” Renewable and Sustainable Energy Reviews, Vol. 64, pp. 289-310, 2016.
    [13] Wong, K.H., et al., “Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review,” Renewable and Sustainable Energy Reviews, Vol. 73, pp. 904-921, 2017.
    [14] Nur Aloma and Ujjwal K. Saha, “Influence of blade profiles on Savonius rotor performance: Numerical simulation and experimental validation,” Energy Conversion and Management, Vol. 186, pp. 267-277, 2019.
    [15] Parag K. Talukdar, Arif Sardar, Vinayak Kulkarni and Ujjwal K. Saha, “Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations,” Energy Conversion and Management, Vol. 158, pp. 36-49, 2018.
    [16] Emeel Kerikous and Dominique Thѐveninand, “Optimal shape of thick blades for a hydraulic Savonius turbine,” Renewable Energy, Vol. 134, pp. 629–638, 2019.
    [17] Burçin Deda Altan, Mehmet Atılgan and Aydoǧan Özdamar, “An experimental study on improvement of a Savonius rotor performance with curtaining,” Experimental Thermal and Fluid Science, Vol. 32, pp. 1673–1678, 2008.
    [18] Emeel Kerikous and Dominique Thevenin, “Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine,” Energy, Vol. 189, Article ID 116157, 14 pages, 2019.
    [19] A. H. Elbatran, Yasser M. Ahmed and Ahmed S. Shehata, “Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine,” Energy, Vol. 134, pp. 566-584, 2017.
    [20] Mabrouk Mosbahi, Ahmed Ayadi, Youssef Chouaibi, Zied Driss and Tullio Tucciarelli, “Performance study of a Helical Savonius hydrokinetic turbine with a new deflector system design,” Energy Conversion and Management, Vol. 194, pp. 55-74, 2019.
    [21] Narendra Thakur, Agnimitra Biswas, Yogesh Kumar and Mithinga Basumatary, “CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design,” Chinese Journal of Chemical Engineering, Vol. 27, pp. 794-801, 2019.
    [22] W. A. El-Askary, M. H. Nasef, A. A. AbdEL-hamid and H. E. Gad, “Harvesting wind energy for improving performance of Savonius rotor,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 139, pp. 8-15, 2015.
    [23] Hossein Alizadeh, Mohammad Hossein Jahangir and Roghayeh Ghasempour, “CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows,” Ocean Engineering, Vol. 202, Article ID 107178, 2020.
    [24] Fen Guo, Baowei Song, Zhaoyong Mao and Wenlong Tian, “Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector,” Energy, Vol. 196, Article ID 117132, 2020.
    [25] F. d. O. Antonio, "Wave energy utilization: A review of the technologies," Renewable and sustainable energy reviews, Vol. 14, No. 3, pp. 899-918, 2010.
    [26] F. d. O. Antonio, " Maximizing Output Power in Oscillating Water Column Wave Power Plants: An Optimization Based MPPT Algorithm," Technologies, Vol. 6, 15 pages, 2018.
    [27] 陳維新,綠色能源與永續發展(二版),高立圖書有限公司,2015。
    [28] Wyre Tidal Energy (2014) How a barrage works. http://www. wyretidalenergy.com/tidal-barrage/how-a-barrage-works.
    [29] Gérard C. Nihous, “A Preliminary Assessment of Ocean Thermal Energy Conversion Resources”, Journal of Energy Resources Technology, Vol 129, pp. 10-17, 2007.
    [30] Tony Burton, Nick Jenkins, David Sharpe and Ervin Bossanyi, Wind energy handbook, Wiley, 2000.
    [31] N. K. Sarma, A. Biswas and R. D. Misra, “Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power,” Energy Coversion and Management, Vol. 83, pp. 88-89, 2014.
    [32] Magdi Ragheb and Adam M. Ragheb, “Wind Turbines Theory - The Betz Equation and Optimal Rotor Tip Speed Ratio," Fundamental and Advanced Topics in Wind Power, pp. 19-38, 2011.
    [33] Anuj Kumar and R. P. Saini, “Performance parameters of Savonius type hydrokinetic turbine-A Review,” Renewable and Sustainable Energy Reviews, Vol. 64, pp. 289-310, 2016.
    [34] W. M. J. Batten, A. S. Bahaj, A. F. Molland and J. R. Chaplin, “Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines,” Ocean Engineering, Vol. 34, pp. 1013-1020, 2007.
    [35] Faisal Mahmuddin, “Rotor Blade Performance Analysis with Blade Element Momentum Theory,” Energy Procedia, Vol. 105, pp. 1123-1129, 2017.
    [36] In Seong Hwang, Yun Han Lee and Seung Jo Kim, “Optimization of cycloidal water turbine and the performance improvement by individual blade control,” Applied Energy, Vol. 86, pp. 1532-1540, 2009.
    [37] Mitsuhiro Shiono, Katsuyuki Suzuki and Seiji Kiho, “An Experimental Study of the Characteristics of a Darrieus Turbine for Tidal Power Generation,” Electrical Engineering in Japan, Vol. 132, No. 3, 2000.
    [38] G. Ferrari, D. Federici, P. Schito, F. Inzoli and R. Mereu, “CFD study of Savonius wind turbine: 3D model validation and parametric analysis,” Renewable Energy, Vol. 105, pp. 722-734, 2017.
    [39] 謝曉星,計算流體力學及熱傳學,高立圖書有限公司,1993。
    [40] 王福軍,計算流體動力學分析,清華大學出版社有限公司,2004。
    [41] B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
    [42] K. A. Hafeza, O. A. Elsamni and K. Y. Zakaria, “Numerical investigation of the fully developed turbulent flow over a moving wavy wall using k-ɛ turbulence model”, Alexandria Engineering Journal, Vol. 50, pp. 145-162, 2011.
    [43] Min-Sin Yang, Design and Analysis of Passively Rotatable Deflector Diversion Tail for Tidal-Current Power Generation Turbine, Master Thesis, Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, 2019.
    [44] M. H. Mohamed, G. Janiga, E. Pap and D. Thévenin, “Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade”, Energy Conversion and Management, Vol. 52, pp. 236-242, 2011.

    下載圖示 校內:2025-01-01公開
    校外:2025-01-01公開
    QR CODE