簡易檢索 / 詳目顯示

研究生: 洪傳凱
Hung, Chuan-Kai
論文名稱: 雲林海域水動力與輸砂之數值模擬
A Numerical Investigation of Hydrodynamic and Sediment Transport along Yunlin Coast
指導教授: 陳佳琳
Chen, Jia-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 73
中文關鍵詞: 雲林海岸波流交互作用輸砂侵淤分析NearCoM-TVD
外文關鍵詞: Yunlin coast, Wave-current interaction, Sediment transport, Siltation and erosion analysis, NearCoM-TVD
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對雲林海域之水動力與泥砂傳輸進行研究,蒐集該區域相關背景資料,亦建置雲林海域之數值模式,採適用於模擬近岸及河口地區之波浪、潮流、近岸流、漂砂和地形變遷的NearCoM-TVD近岸模式系統以進行模擬評估,並使用潮位測站與都卜勒流速剖面儀所量測到之流速資料驗證模式之正確性。測站與模擬之潮位及流速的率定結果顯示,其潮流相位、週期及振幅的模擬和觀測值都有良好的一致性,因此本研究模擬的結果可用以討論此模擬區域的流場及輸沙特性。根據模擬結果,在波浪及潮流共同作用下,麥寮港航道南側之淺灘呈現朝向航道移動之趨勢,代表航道淤積的現象。模式結果顯示,波浪造成由北向南流動之沿岸流亦可能會將北面的砂源向南運送,在不考慮潮流影響下,此沿岸流之淨量值即可達到0.3m/s,若再加上潮流交互影響下,會導致沿岸流增強,其中北面之砂源也包含了來自濁水溪出海口之高濃度沉積物,而這些沉積物會隨著港口附近之流速減緩,容易在此處沉降。

    The mechanisms controlling sediment transport are complicated due to the interaction among waves, tidal currents, river flow over complex bathymetry. The goal of this study is to clarify the contribution of exposed riverine sediment and hydrodynamics to the observed morphological evolution in the adjacent area. NearCoM-TVD, couples SWAN and SHORECIRC, reproduced water levels, waves, currents observed along the sandy coasts reasonably well. Model results were used to provide insights into the patterns of flow residual for a range of riverine discharge, spring-neap tidal forcing, and wave conditions. Simulation results reveal that tidal currents play an important role in net transport northward during normal conditions, and wave-driven longshore currents also transported significant amount of sediment from the mouth of the Choushui River during northeast monsoon season. Model result shows that the installation of submerged vegetation could be one of engineering means to modify the circulation system nearby port to mitigate the siltation problem. Model results with submerged aquatic vegetation (SAV) installing in the southern Mailiao Port demonstrate that SAV plays a prominent role in blocking sediment from entering the navigation channel or port basin.

    摘要 I Extended Abstract II 誌謝 IX 目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 本文架構 5 第二章 研究分析方法 6 2.1 雲林海域相關背景資料蒐集 7 2.2 數值模式NearCoM-TVD概論 9 2.3 NearCoM-TVD模式架設 15 2.3.1 水深地形條件及網格製作 15 2.3.2 潮位邊界條件 17 2.3.3 波浪邊界條件 18 2.3.4 底質粒徑設定 18 2.4 率定之誤差計算參數 19 第三章 結果與討論 21 3.1 模式之結果率定 21 3.1.1 模式結果與觀測資料率定 - caseⅠ 21 3.1.2 模式結果與觀測資料率定 - caseⅡ 27 3.1.3 模式結果與觀測資料率定 - caseⅢ 31 3.1.4 模式結果與觀測資料率定 - caseⅣ 35 3.1.5 模式結果與觀測資料率定 - caseⅤ 39 3.1.6 模式結果與觀測資料率定成果 43 3.2 麥寮港區周圍流場及地形變化模擬 45 3.2.1 東北季風條件的流場模擬 45 3.2.2 波流交互作用下的流場及地形變遷模擬 49 3.2.3 航道淤積因應對策 - 潛式砂壩或水生植被 53 第四章 結論與建議 55 4.1 結論 55 4.2 建議 56 參考文獻 57 附錄一:颱洪時期濁水溪口輸沙數值模擬 61 附錄二:三條崙沙洲之蚵架區域波流場數值模擬 67

    1. Bergsma, E. W. J. (2012). Oyster Reefs in Intertidal Areas. Deltares University of Applied Sciences.
    2. Booij, Ris, and Holthuijsen (1999), A third-generation wave model for coastal regions, J. Geophys. Res., 104(C4), 7649-7666.
    3. Chen, J.-L., Shi, F., Hsu, T.-J., & Kirby, J. T. (2014). NearCoM-TVD — A quasi-3D nearshore circulation and sediment transport model. Coastal Engineering, 91, 200–212.
    4. Chen, Shih-Nan, Geyer, W. Rockwell, Hsu, Tian-Jian (2013), A numerical investigation of the dynamics and structure of hyperpycnal river plumes on sloping continental shelves, Journal of Geophysical Research: Oceans, Volume 118, Issue 5, pp. 2702-2718.
    5. Dean, R.G., Dalrymple, R.A., 2002. Coastal Processes with Engineering Applications. Cambridge University Press.
    6. Gottlieb, S., Shu, C. W., and Tadmore, E. (2001), Strong stability-preserving high-order time discretization methods. SIAM Review, 43(1), 89-112.
    7. Longuet-Higgins, M.S., Stewart, R.W., 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res. 11 (4), 529–562.
    8. Milliman, Lin, Kao, Liu, Liu, Chiu, Lin (2007), Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004, Geology, 35 (9), 779-782.
    9. Putrevu, U. and Svendsen, I.A. (1999)“Three-dimensional dispersion of momentum in wave induced nearshore currents,” Eur. J. Mech. B/Fluids, Vol. 18, pp. 409-427.
    10. Reidenbach, Matthew A.,Berg, Peter,Hume, Andrew,Hansen, Jennifer C. R.,Whitman, Elizabeth R., (2013). Hydrodynamics of intertidal oyster reefs: The influence of boundary layer flow processes on sediment and oxygen exchange.Limnology and Oceanography: Fluids and Environments,3, 10.1215/21573689‐2395266.
    11. Shi, F., Hanes, D.M., Kirby, J.T., Erikson, L., Barnard, P., Eshleman, J., 2011. Pressure gradient driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system. J. Geophys. Res. 116, C04020.
    12. Shi, F., Kirby, J.T., Hanes, D., 2007. An efficient mode-splitting method for a curvilinear nearshore circulation model. Coast. Eng. 54 (11), 811–824.
    13. Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D., and Grilli, S.T. (2011b) “A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation,” Ocean Modelling, Vol. 43-44, pp. 36-51.
    14. Shi, F., Sun, W., 1995. A variable boundary model of storm surge flooding in generalized curvilinear grids. Int. J. Numer. Methods Fluids 21 (8), 642–651.
    15. Shi, F., Svendsen, I. A., Kirby, J. T., & McKee Smith, J. (2003). A curvilinear version of a quasi-3D nearshore circulation model. Coastal Engineering, 49(1-2), 99–124.
    16. Soulsby, R.L., 1997. Dynamics of Marine Sands. Thomas Telford, London.
    17. Soulsby, R.L., Hamm, L., Klopman, G., Myrhaug, D., Simons, R.R., Thomas, G.P., 1993. Wave–current interaction within and outside the bottom boundary layer. Coast. Eng. 21, 41–69.
    18. Styles, R. (2015). Flow and Turbulence over an Oyster Reef. Journal of Coastal Research, 314, 978–985.
    19. Styles, R. (2015). Flow and Turbulence over an Oyster Reef. Journal of Coastal Research Vol. 31.
    20. Svendsen, and Putrevu (1994), Nearshore mixing and dispersion, Proc. R. Soc. London A, 445, 561–576.
    21. Svendsen, I.A., 1984. Mass flux and undertow in a surf zone. Coast. Eng. 8, 347–365.
    22. Svendsen, I.A., Haas, K.A., Zhao, Q., 2004. Quasi-3D Nearshore Circulation Model SHORECIRC: Version 2.0, Research Report, Center for Applied Coastal Research. University of Delaware.
    23. Svendsen, I.A., Putrevu, U., 1990. Nearshore circulation with 3-D profiles. Proc 22th Int. Conf. Coastal Engrg. ASCE, pp. 241–254.
    24. Thompson, J.F., Warsi, Z.U., Mastin, C.W., 1985. Numerical Grid Generation: Foundations and Applications. Elsevier North-Holland, Inc., New York, NY, USA.
    25. Tonelli, M., & Petti, M. (2009). Hybrid finite volume – finite difference scheme for 2DH improved Boussinesq equations. Coastal Engineering, 56(5-6), 609–620.
    26. Toro, E.F., 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Third edition. Springer, New York.
    27. Van Rijn, L.C., 1984. Sediment transport, part III: bed forms and alluvial roughness. J. Hydraul. Eng. ASCE 110 (12), 1733–1754.
    28. Van Rijn, L.C., 2000. General view on sediment transport by currents and waves. Rep. Z2899, Delft Hydraulics, Delft, The Netherlands.
    29. Van Rijn, L.C., 2011. Principles of Fluid Flow and SurfaceWaves in Rivers, Estuaries and Coastal Seas, Including Update of 2011. Aqua Publications, Amsterdam, The Netherlands.
    30. Van Rijn, L.C., Tonnon, P.K., Walstra, D.J.R., 2011. Numerical modelling of erosion and accretion of plane sloping beaches at different scales. Coast. Eng. 58, 637–655.
    31. Wilmott, C. J. (1981), On validation of models, Phys. Geogr., 2, 184–194.
    32. 中央大學(2018),麥寮港航道漂沙淤積及防止對策研究-期中報告書。
    33. 吳啟南、吳哲榮、李元炎(1996),雲林海岸地區五十年來的變遷分析,第十八屆海洋工程研討會論文集,666-674頁。
    34. 李杰(2013),潮汐機制影響下濁水溪河口懸浮顆粒特性之變化,中山大學海下科技暨應用海洋物理研究所學位論文。
    35. 林俊全、蘇淑娟(2013),「台灣的動態地景」,農委會林務局。
    36. 郭平巧、陳佳琳、楊炳達、許弘莒、徐天健(2013),運用近岸水理模式(NearCoM)模擬彰雲海域之海潮流變化,第三十五屆海洋工程研討會論文集,173-178頁。
    37. 黃郁琪(2017),雲林海域地形變遷之統計分析,成功大學水利及海洋工程學系碩士論文。
    38. 經濟部水利署(2010~2018),「臺灣水文年報」。
    39. 經濟部水利署(2019),「雲林縣一級海岸防護計畫(草案)」。
    40. 錢樺(2019),台灣海岸帶變遷與海陸交互作用研究。
    41. 蘇榮昌、劉進義、王冠斐、游振偉、潘素禎、郭宗雄(2006),「雲林海岸沿岸沙洲地形變遷」,第二十八屆海洋工程研討會論文集,587-591頁。

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE