| 研究生: |
邱奕棠 Chiu, Yi-Tang |
|---|---|
| 論文名稱: |
毫米波頻段上巨量天線系統之低複雜度非正交多址接入設計 Low Complexity NOMA Design for Millimeter-Wave Massive MIMO System |
| 指導教授: |
劉光浩
Liu, Kuang-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 非正交多址接入 、巨量天線系統 、波束域 、大規模接入 、波束選擇 、功率分配 、準降級通道 |
| 外文關鍵詞: | NOMA, massive MIMO, beamspace, massive connectivity, beam selection, power allocation, quasi-degradation |
| 相關次數: | 點閱:131 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應用於毫米波頻段上之大規模機器型態通訊,將作為第五代行動通訊系統主要的應用場景之一。在以波束為空中接取介面的新型態通訊架構下,其中最主要的挑戰為:如何利用有限的波束用以服務大規模的使用者。由於在毫米波頻段上通道具有稀疏性,若是多個使用者具有最大功率的波束相同,意即一個波束需要服務多個使用者時,會造成非常嚴重的使用者間干擾,也就是波束內干擾。若是透過全數位預編碼的方式來消除波束內干擾,我們需確保傳送端射頻鏈結的數量要等於天線的數量。在巨量天線系統下,此情況將造成非常嚴重的功率消耗。因此,我們藉由波束選擇技術,同時透過非正交多址接入技術,適當分配傳送功率給不同波束與使用者,即可透過較少數量的射頻鏈結來達到系統效能最佳化的目的。考量到波束選擇結合功率分配之問題為一個複雜度極高的NP困難問題,非常難以解決,我們進一步將問題拆分成兩個子問題,分別是波束選擇部份以及功率分配的部份。針對這兩個問題,我們透過低複雜度的確定性演算法,同時選用不同的次經驗法則演算法,包含基因演算法、粒子群聚法以及模擬退火法,可有效地找到近似最佳解。
透過模擬結果發現,相較於凸優化鬆馳功率分配法與窮舉波束選擇法,我們所提出的確定性演算法為次優演算法,但複雜度非常低。另一方面,藉由我們提出的次經驗法則演算法可以得到比凸優化鬆馳功率分配法以及窮舉波束選擇法更好的效能。我們所提出的演算法,可以有效地降低波束介面上的硬體負荷,同時可以藉較低的複雜度達到趨近於最優的效能。此篇論文所提出之演算法,將能有效地應用於第五代通訊系統中大規模機器型態通訊的使用場景之下。
Massive machine type communications (mMTC) will be a killer use case of fifth-generation (5G) wireless systems using millimeter-wave (mmWave) band. Since 5G will be characterized by the beam-based air interface, a critical challenge is to serve massive users using available beams. Due to the sparsity of mmWave channels, several users might receive the strongest power from the same beam and then introduce severe intra-beam interference (intra-BI). While intra-BI can be mitigated through full digital precoding, the required number of RF chains is identical to the number of antennas, resulting in high power consumption using full digital precoding. By selecting a set of beams and applying non-orthogonal multiple access (NOMA) to properly allocate transmit power to each beam and user, the sum rate can be maximized using a smaller number of RF chains. Since the problem of joint beam selection and power allocation is NP-hard and thus difficult to solve, we decompose the problem into two sub-problems, i.e., beam selection and power allocation. Both sub-problems are solved by deterministic algorithms with much lower complexity than exhaustive search. Besides, we exploit some celebrated meta-heuristic approaches, including generic algorithm (GA), particle swarm optimization (PSO), and simulated annealing (SA), to efficiently search for good solutions. Simulation results show that the performance of the proposed deterministic algorithms are comparable to that of a sub-optimal algorithm based on convex-relaxation power allocation (CRPA) and exhaustive beam selection (EBS) but with much lower complexity. On the other hand, meta-heuristic methods can also delivery promising and sometimes better results than CRPA and exhaustive beam selection. The proposed approaches can relax the hardware burden of beam-based air interface and achieve close-to-optimal performance with low complexity and thus can be useful to support massive connectivity in 5G.
[1] B. Wang, L. Dai, Z. Wang, N. Ge, and S. Zhou, “Spectrum and energy-efficient beamspace mimo-noma for millimeter-wave communications using lens antenna array,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2370–2382, 2017.
[2] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE communications magazine, vol. 49, no. 6, pp. 101–107, 2011.
[3] A. Sayeed and N. Behdad, “Continuous aperture phased mimo: Basic theory and applications,” in Proc. Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2010, pp. 1196–1203.
[4] A. M. Sayeed and N. Behdad, “Continuous aperture phased mimo: A new architecture for optimum line-of-sight links,” in Proc. IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, pp. 293–296.
[5] P. V. Amadori and C. Masouros, “Low rf-complexity millimeter-wave beamspacemimo systems by beam selection,” IEEE Transactions on Communications, vol. 63, no. 6, pp. 2212–2223, 2015.
[6] S. Sanayei and A. Nosratinia, “Antenna selection in mimo systems,” IEEE Communications Magazine, vol. 42, no. 10, pp. 68–73, 2004.
[7] J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace mimo for millimeter-wave communications: System architecture, modeling, analysis, and measurements,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3814–3827, 2013.
[8] T. S. Rappaport, J. N. Murdock, and F. Gutierrez, “State of the art in 60-ghz integrated circuits and systems for wireless communications,” Proceedings of the IEEE, vol. 99, no. 8, pp. 1390–1436, 2011.
[9] L. Wei, R. Q. Hu, Y. Qian, and G. Wu, “Key elements to enable millimeter wave communications for 5g wireless systems,” IEEE Wireless Communications, vol. 21, no. 6, pp. 136–143, 2014.
[10] M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, G. K. Karagiannidis, E. Björnson, K. Yang, I. Chih-Lin et al., “Millimeter wave communications for future mobile networks,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 1909–1935, 2017.
[11] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5g cellular communications: Theoretical feasibility and prototype results,” IEEE Communications Magazine, vol. 52, no. 2, pp. 106–113, 2014.
[12] J. Brady and A. Sayeed, “Beamspace mu-mimo for high-density gigabit small cell access at millimeter-wave frequencies,” in Proc. IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2014, pp. 80–84.
[13] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up mimo: Opportunities and challenges with very large arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40–60, 2013.
[14] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive mimo for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, 2014.
[15] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive mimo: Ten myths and one critical question,” IEEE Communications Magazine, vol. 54, no. 2, pp. 114–123, 2016.
[16] S. Han, I. Chih-Lin, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5g,” IEEE Communications Magazine, vol. 53, no. 1, pp. 186–194, 2015.
[17] X. Gao, L. Dai, Z. Chen, Z. Wang, and Z. Zhang, “Near-optimal beam selection for beamspace mmwave massive mimo systems,” IEEE Communications Letters, vol. 20, no. 5, pp. 1054–1057, 2016.
[18] A. Sayeed and J. Brady, “Beamspace mimo for high-dimensional multiuser communication at millimeter-wave frequencies,” in Proc. IEEE Global Communications Conference (GLOBECOM), 2013, pp. 3679–3684.
[19] K. Higuchi and A. Benjebbour, “Non-orthogonal multiple access (noma) with successive interference cancellation for future radio access,” IEICE Transactions on Communications, vol. 98, no. 3, pp. 403–414, 2015.
[20] A. Benjebbour, Y. Saito, Y. Kishiyama, A. Li, A. Harada, and T. Nakamura, “Concept and practical considerations of non-orthogonal multiple access (noma) for future radio access,” in Proc. IEEE International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), 2013, pp. 770–774.
[21] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, “System-level performance evaluation of downlink non-orthogonal multiple access (noma),” in Proc. IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2013, pp. 611–615.
[22] A. Benjebbour, “An overview of non orthogonal multiple access,” ZTE COMMUNICATIONS, vol. 15, no. S1, p. 1, 2017.
[23] Y. Zeng and R. Zhang, “Millimeter wave mimo with lens antenna array: A new path division multiplexing paradigm,” IEEE Transactions on Communications, vol. 64, no. 4, pp. 1557–1571, 2016.
[24] G. H. Song, J. Brady, and A. Sayeed, “Beamspace mimo transceivers for lowcomplexity and near-optimal communication at mm-wave frequencies,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 4394–4398.
[25] J. Hogan and A. Sayeed, “Beam selection for performance-complexity optimization in high-dimensional mimo systems,” in Proc. 2016 IEEE Annual Conference on Information Science and Systems (CISS), 2016, pp. 337–342.
[26] R. Qian, M. Sellathurai, and X. M. Fang, “Antenna selection for multi-user mimo at millimeter-wave spectrum with lens antenna arrays,” in Proc. IEEE International Conference on Communications (ICC), 2017, pp. 1–5.
[27] H. Lin, F. Gao, S. Jin, and G. Y. Li, “A new view of multi-user hybrid massive mimo: Non-orthogonal angle division multiple access,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2268–2280, 2017.
[28] Z. Ding, L. Dai, and H. V. Poor, “Mimo-noma design for small packet transmission in the internet of things,” IEEE Access, vol. 4, pp. 1393–1405, 2016.
[29] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5g networks: Research challenges and future trends,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2181–2195, 2017.
[30] M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, “A minorizationmaximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems,” IEEE Transactions on Signal Processing, vol. 64, no. 1, pp. 76–88, 2016.
[31] A. Meijerink and A. F. Molisch, “On the physical interpretation of the saleh– valenzuela model and the definition of its power delay profiles,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 9, pp. 4780–4793, 2014.
[32] J. W. Wallace and M. A. Jensen, “Modeling the indoor mimo wireless channel,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 5, pp. 591–599, 2002.
[33] A. A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, 1987.
[34] T. S. Rappaport, E. Ben-Dor, J. N. Murdock, and Y. Qiao, “38 ghz and 60 ghz angle-dependent propagation for cellular & peer-to-peer wireless communications,” in Proc. IEEE International Conference on Communications (ICC), 2012, pp. 4568–4573.
[35] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna gaussian broadcast channel,” IEEE Transactions on Information Theory, vol. 49, no. 7, pp. 1691–1706, 2003.
[36] H. Sato, “Two-user communication channels,” IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 295–304, 1977.
[37] Z. Chen, Z. Ding, P. Xu, and X. Dai, “Optimal precoding for a qos optimization problem in two-user miso-noma downlink,” IEEE Communications Letters, vol. 20, no. 6, pp. 1263–1266, 2016.
[38] Z. Chen, Z. Ding, X. Dai, and G. K. Karagiannidis, “On the application of quasidegradation to miso-noma downlink,” IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6174–6189, 2016.
[39] Y. Han, S. Jin, J. Zhang, J. Zhang, and K.-K. Wong, “Dft-based hybrid beamforming multiuser systems: Rate analysis and beam selection,” IEEE Journal of Selected Topics in Signal Processing, 2018.
[40] P. V. Amadori and C. Masouros, “Low rf-complexity millimeter-wave beamspacemimo systems by beam selection,” IEEE Transactions on Communications, vol. 63, no. 6, pp. 2212–2223, 2015.
[41] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.
[42] R. Sheikhpour, M. A. Sarram, S. Gharaghani, and M. A. Z. Chahooki, “A survey on semi-supervised feature selection methods,” Pattern Recognition, vol. 64, pp. 141–158, 2017.
[43] Y.-S. Choi, A. F. Molisch, M. Z. Win, and J. H. Winters, “Fast algorithms for antenna selection in mimo systems,” in Proc. IEEE Vehicular Technology Conference, vol. 3, 2003, pp. 1733–1737.
[44] F. Marini and B. Walczak, “Particle swarm optimization (pso). a tutorial,” Chemometrics and Intelligent Laboratory Systems, vol. 149, pp. 153–165, 2015.
[45] C.-L. Huang and J.-F. Dun, “A distributed pso–svm hybrid system with feature selection and parameter optimization,” Applied Soft Computing, vol. 8, no. 4, pp. 1381 – 1391, 2008, soft Computing for Dynamic Data Mining. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1568494607001299
[46] D. K. Agrafiotis and W. Cedeño, “Feature selection for structure−activity correlation using binary particle swarms,” Journal of Medicinal Chemistry, vol. 45, no. 5, pp. 1098–1107, 2002, pMID: 11855990.
[47] S.-W. Lin, T.-Y. Tseng, S.-Y. Chou, and S.-C. Chen, “A simulated-annealingbased approach for simultaneous parameter optimization and feature selection of back-propagation networks,” Expert Systems with Applications, vol. 34, no. 2, pp. 1491 – 1499, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0957417407000310
[48] R. Meiri and J. Zahavi, “Using simulated annealing to optimize the feature selection problem in marketing applications,” European Journal of Operational Research, vol. 171, no. 3, pp. 842–858, 2006.
[49] S.-W. Lin, Z.-J. Lee, S.-C. Chen, and T.-Y. Tseng, “Parameter determination of support vector machine and feature selection using simulated annealing approach,” Applied Soft Computing, vol. 8, no. 4, pp. 1505–1512, 2008.
[50] A. Gelman, G. O. Roberts, W. R. Gilks et al., “Efficient metropolis jumping rules,” Bayesian statistics, vol. 5, no. 42, pp. 599–608, 1996.
[51] B. Kim, S. Lim, H. Kim, S. Suh, J. Kwun, S. Choi, C. Lee, S. Lee, and D. Hong, “Non-orthogonal multiple access in a downlink multiuser beamforming system,” in Proc. IEEE Military Communications Conference (MILCOM), 2013, pp. 1278– 1283.
[52] M. M. El-Sayed, A. S. Ibrahim, and M. M. Khairy, “Power allocation strategies for non-orthogonal multiple access,” in Proc. International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), 2016, pp. 1–6.
[53] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V. Poor, “Application of non-orthogonal multiple access in lte and 5g networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185–191, 2017.
[54] L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I, and Z. Wang, “Non-orthogonal multiple access for 5g: solutions, challenges, opportunities, and future research trends,” IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, 2015.
[55] Z. Xiao, L. Dai, Z. Ding, J. Choi, and P. Xia, “Millimeter-wave communication with non-orthogonal multiple access for 5g,” arXiv preprint arXiv:1709.07980, 2017.
[56] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (noma) for cellular future radio access,” in Proc. IEEE 77th Vehicular Technology Conference (VTC Spring), 2013, pp. 1–5.
[57] S. Ali, E. Hossain, and D. I. Kim, “Non-orthogonal multiple access (noma) for downlink multiuser mimo systems: User clustering, beamforming, and power allocation,” IEEE Access, vol. 5, pp. 565–577, 2017.
[58] X. Gao, L. Dai, S. Han, I. Chih-Lin, and R. W. Heath, “Energy-efficient hybrid analog and digital precoding for mmwave mimo systems with large antenna arrays,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 998–1009, 2016.
[59] A. B. Constantine et al., “Antenna theory: analysis and design,” Microstrip Antennas, third edition, John wiley & sons, 2005.
[60] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Information Processing Letters, vol. 85, no. 6, pp. 317– 325, 2003.
[48] R. Meiri and J. Zahavi, “Using simulated annealing to optimize the feature selection problem in marketing applications,” European Journal of Operational Research, vol. 171, no. 3, pp. 842–858, 2006.
[49] S.-W. Lin, Z.-J. Lee, S.-C. Chen, and T.-Y. Tseng, “Parameter determination of support vector machine and feature selection using simulated annealing approach,” Applied Soft Computing, vol. 8, no. 4, pp. 1505–1512, 2008.
[50] A. Gelman, G. O. Roberts, W. R. Gilks et al., “Efficient metropolis jumping rules,” Bayesian statistics, vol. 5, no. 42, pp. 599–608, 1996.
[51] B. Kim, S. Lim, H. Kim, S. Suh, J. Kwun, S. Choi, C. Lee, S. Lee, and D. Hong, “Non-orthogonal multiple access in a downlink multiuser beamforming system,” in Proc. IEEE Military Communications Conference (MILCOM), 2013, pp. 1278– 1283.
[52] M. M. El-Sayed, A. S. Ibrahim, and M. M. Khairy, “Power allocation strategies for non-orthogonal multiple access,” in Proc. International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), 2016, pp. 1–6.
[53] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V. Poor, “Application of non-orthogonal multiple access in lte and 5g networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185–191, 2017.
[54] L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I, and Z. Wang, “Non-orthogonal multiple access for 5g: solutions, challenges, opportunities, and future research trends,” IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, 2015.
[55] Z. Xiao, L. Dai, Z. Ding, J. Choi, and P. Xia, “Millimeter-wave communication with non-orthogonal multiple access for 5g,” arXiv preprint arXiv:1709.07980, 2017.
[56] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (noma) for cellular future radio access,” in Proc. IEEE 77th Vehicular Technology Conference (VTC Spring), 2013, pp. 1–5.
[57] S. Ali, E. Hossain, and D. I. Kim, “Non-orthogonal multiple access (noma) for downlink multiuser mimo systems: User clustering, beamforming, and power allocation,” IEEE Access, vol. 5, pp. 565–577, 2017.
[58] X. Gao, L. Dai, S. Han, I. Chih-Lin, and R. W. Heath, “Energy-efficient hybrid analog and digital precoding for mmwave mimo systems with large antenna arrays,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 998–1009, 2016.
[59] A. B. Constantine et al., “Antenna theory: analysis and design,” Microstrip Antennas, third edition, John wiley & sons, 2005.
[60] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Information Processing Letters, vol. 85, no. 6, pp. 317– 325, 2003.
[61] M. Claesen and B. De Moor, “Hyperparameter search in machine learning,” arXiv preprint arXiv:1502.02127, 2015.
[62] C. Masouros, M. Sellathurai, and T. Ratnarajah, “Computationally efficient vector perturbation precoding using thresholded optimization,” IEEE Transactions on Communications, vol. 61, no. 5, pp. 1880–1890, 2013.
[63] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Eastern Research Laboratory, Digital Equipment Corporation Hudson, MA, 1984, vol. 38.
[64] A. F. Molisch, J. R. Foerster, and M. Pendergrass, “Channel models for ultrawideband personal area networks,” IEEE Wireless Communications, vol. 10, no. 6, pp. 14–21, 2003.
[65] O. El Ayach, R. W. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, “The capacity optimality of beam steering in large millimeter wave mimo systems,” in Proc. IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2012, pp. 100–104.